In a reversible reaction both reactants and products are separated from each other by using ....... sign. .
Answers
Irreversible Reactions
A fundamental concept of chemistry is that chemical reactions occurred when reactants reacted with each other to form products. These unidirectional reactions are known as irreversible reactions, reactions in which the reactants convert to products and where the products cannot convert back to the reactants. These reactions are essentially like baking. The ingredients, acting as the reactants, are mixed and baked together to form a cake, which acts as the product. This cake cannot be converted back to the reactants (the eggs, flour, etc.), just as the products in an irreversible reaction cannot convert back into the reactants.
An example of an irreversible reaction is combustion. Combustion involves burning an organic compound—such as a hydrocarbon—and oxygen to produce carbon dioxide and water. Because water and carbon dioxide are stable, they do not react with each other to form the reactants. Combustion reactions take the following form:
Reversible Reactions
In reversible reactions, the reactants and products are never fully consumed; they are each constantly reacting and being produced. A reversible reaction can take the following summarized form:
This reversible reaction can be broken into two reactions.
These two reactions are occurring simultaneously, which means that the reactants are reacting to yield the products, as the products are reacting to produce the reactants. Collisions of the reacting molecules cause chemical reactions in a closed system. After products are formed, the bonds between these products are broken when the molecules collide with each other, producing sufficient energy needed to break the bonds of the product and reactant molecules.
Explanation:
c2h2+202---2co2+H2
mark me as brainliest answer
please follow me yar