English, asked by gauravkumarraj96085, 5 months ago

In a rhombus ABCD, the altitude from D to the
side AB bisects AB. Find the angles of rhombus.

Answers

Answered by MagicalLove
229

From the figure consider DP bisect the side at point P

☯ Construct a line at BD

Consider AMD and BMD

WKT,

 \sf \: AM = BM ( M  \:  \: is \:  \:  the \:  \:  mid  \:  \: point \:  \:  of  \:  \: AB)

 \sf \: \angle AMD= \angle \: BMD (90 \degree)

 \sf \triangle \:  AMD \cong \:  \triangle \: BMD(By  \:  \: SAS \:  \:  Criteria)

 \bf \red{The \:  \:  sides \:  \:  of \:  \: a \:  \: rhombus \:  \: are \:  \: equal}

AB =AD

It can be written as

AD=AB=BD

In ADB is an equilateral triangle

 \therefore \sf{ \angle \: A=60 \degree}

 \bf \green{ \angle \: C= \angle \: A = 60 \degree}(in \:  \: rhombus \:  \: opposite \:  \: angles \:  \: are \:  \: equal)

we know that

 \tt \:  \angle \: B+ \angle \: Q = 180 \degree

\tt \:  \angle \: B = 180 \degree - 60 \degree

\tt \:  \angle \: B = 120 \degree

we know that,

 \bf \green{ \angle \: D= \angle \: B=120\degree}

 \therefore \tt \pink{The  \:  \: angles  \:  \: of \:  \:  the \:  \:  rhombus \:  \:  is \angle \: C= \angle \: A = 60 \degree \: and \:  \: \angle \: D= \angle \: B=120\degree}

Attachments:

1009akshatkv42020: thnx for following me ☺️
vijaymangali91: hi
Answered by ItzJanvi10
2

  • From the figure consider DP bisect the side at point P

☯ Construct a line at BD

  • Consider ∆AMD and ∆BMD

\bf \red{The \: \: sides \: \: of \: \: a \: \: rhombus \: \: are \: \: equal}

  • AB =AD

  • It can be written as

  • AD=AB=BD

  • In ∆ADB is an equilateral triangle

\therefore \sf{ \angle \: A=60 \degree}

\bf \green{ \angle \: C= \angle \: A = 60 \degree}(in \: \: rhombus \: \: opposite \: \: angles \: \: are \: \: equal)∠C=∠A=60°

  • we know that

\tt \: \angle \: B+ \angle \: Q = 180 \degree∠B+∠Q=180°

\tt \: \angle \: B = 180 \degree - 60 \degree∠B=180°−60°

\tt \: \angle \: B = 120 \degree∠B=120°

  • we know that,

\bf \green{ \angle \: D= \angle \: B=120\degree}

\therefore \tt \pink{The \: \: angles \: \: of \: \: the \: \: rhombus \: \: is \angle \: C= \angle \: A = 60 \degree \: and \: \: \angle \: D= \angle \: B=120\degree}

ItzJanhvi 10❤

Attachments:
Similar questions