in a rhombus each side measures 13 cm and one of the diagonal is 10 cm find the length of the Other diagonal also find the area of the Rhombus
Answers
AnswEr :
Reference of Image is in the attachment :
- ABCD is a Rhombus.
- AB = BC = CD = DA = 13 cm
- AC = 10 cm
- OA = OC = 5 cm
we know that Diagonal of Rhombus Bisect Each Other. Therefore BD will Bisect AC at O and that Angle will be 90°.
• In Triangle BOC ; By Heron's Formula :
⇒ BC² = OC² + OB²
⇒ ( 13 )² = ( 5 )² + OB²
⇒ OB² = ( 13 )² - ( 5 )²
- (a² - b²) = (a + b)(a - b)
⇒ OB² = (13 + 5)(13 - 5)
⇒ OB² = 18 × 8
⇒ OB² = 144
⇒ OB = √144
⇒ OB = √(12 × 12)
⇒ OB = 12 cm
Now : BD = 2 × OB = (2 × 12 cm) = 24 cm
_________________________________
• Area of Rhombus ABCD :
⇒ Area = 1 /2 × D₁ × D₂
⇒ Area = 1 /2 × AC × BD
⇒ Area = 1 /2 × 10 cm × 24 cm
⇒ Area = 10 cm × 12 cm
⇒ Area = 120 cm²
∴ Area of the Rhombus will be 120 cm² and Other Diagonal will be 24 cm.
Given:
In a rhombus each side measures 13cm and one of the diagonal is 10cm.
To find:
The length of the other diagonal & area of the rhombus.
We have,
- Each rhombus side= 13cm
- Diagonal of one rhombus,[d1]= 10cm
From attachment figure of rhombus:
- AB=BC=CD=DA= 13cm
- AC,d1= 10cm
- AC ⊥ BD [Property of rhombus]
- OA = OC
- OB = OD
Now,
In ΔOAB, [Using Pythagoras Theorem]
→ [Hypotenuse]² = [Base]² + [Perpendicular]²
→ (AB)² = (OA)² + (OB)²
→ (13cm)² = (5cm)² + (OB)²
→ 169cm² = 25cm² + (OB)²
→ OB² = 169cm² - 25cm²
→ OB² = 144cm²
→ OB = √144cm²
→ OB = 12cm
- Other diagonal of the rhombus:
→ BD = OB + OD
→ BD = 2 × OB
→ BD = (2 × 12)cm
→ BD = 24cm
Now,
- Area of rhombus ABCD
Diagonal,d1 [AC]= 10cm
Diagonal,d2 [BD]= 24cm
→ Area of rhombus=
→ Area of rhombus=
→ Area of rhombus=
→ Area of rhombus= (10 × 12)cm²
→ Area of rhombus = 120cm²