Math, asked by tashupal, 11 months ago

in a rhombus each side measures 13 cm and one of the diagonal is 10 cm find the length of the Other diagonal also find the area of the Rhombus​

Answers

Answered by Anonymous
123

AnswEr :

Reference of Image is in the attachment :

  • ABCD is a Rhombus.
  • AB = BC = CD = DA = 13 cm
  • AC = 10 cm
  • OA = OC = 5 cm

we know that Diagonal of Rhombus Bisect Each Other. Therefore BD will Bisect AC at O and that Angle will be 90°.

In Triangle BOC ; By Heron's Formula :

⇒ BC² = OC² + OB²

⇒ ( 13 )² = ( 5 )² + OB²

⇒ OB² = ( 13 )² - ( 5 )²

  • (a² - b²) = (a + b)(a - b)

⇒ OB² = (13 + 5)(13 - 5)

⇒ OB² = 18 × 8

⇒ OB² = 144

⇒ OB = √144

⇒ OB = √(12 × 12)

OB = 12 cm

Now : BD = 2 × OB = (2 × 12 cm) = 24 cm

_________________________________

Area of Rhombus ABCD :

⇒ Area = 1 /2 × D₁ × D₂

⇒ Area = 1 /2 × AC × BD

⇒ Area = 1 /2 × 10 cm × 24 cm

⇒ Area = 10 cm × 12 cm

Area = 120 cm²

Area of the Rhombus will be 120 cm² and Other Diagonal will be 24 cm.

Attachments:
Answered by Anonymous
54

\bf{\Huge{\underline{\boxed{\sf{\green{ANSWER\::}}}}}}

Given:

In a rhombus each side measures 13cm and one of the diagonal is 10cm.

To find:

The length of the other diagonal & area of the rhombus.

\bf{\Large{\underline{Explanation\::}}}}

We have,

  • Each rhombus side= 13cm
  • Diagonal of one rhombus,[d1]= 10cm

From attachment figure of rhombus:

  • AB=BC=CD=DA= 13cm
  • AC,d1= 10cm
  • AC ⊥ BD      [Property of rhombus]
  • OA = OC
  • OB = OD

Now,

In ΔOAB, [Using Pythagoras Theorem]

→ [Hypotenuse]² = [Base]² + [Perpendicular]²

→ (AB)² = (OA)² + (OB)²

→ (13cm)² = (5cm)² + (OB)²

→ 169cm² = 25cm² + (OB)²

→ OB² = 169cm² - 25cm²

→ OB² = 144cm²

→ OB = √144cm²

OB = 12cm

  • Other diagonal of the rhombus:

→ BD = OB + OD

→ BD = 2 × OB

→ BD = (2 × 12)cm

→ BD = 24cm

Now,

  • Area of rhombus ABCD

Diagonal,d1 [AC]= 10cm

Diagonal,d2 [BD]= 24cm

→ Area of rhombus= \frac{1}{2} *d1*d2

→ Area of rhombus= (\frac{1}{2} *10*24)cm^{2}

→ Area of rhombus= (\frac{1}{\cancel{2}} *10*\cancel{24})cm^{2}

→ Area of rhombus= (10 × 12)cm²

→ Area of rhombus = 120cm²

Attachments:
Similar questions