Math, asked by AdityaHada97, 3 months ago

in a right ∆ABC, right angled at B and AB:AC=1:√5. Find the value of 2tanA/1+tan²A​

Answers

Answered by prabhas24480
3

  • We are given that,

In right triangle ABC, the ratio AB : AC = 1 : \sqrt{2}.

  • So, from the figure below, we get that,

\cos A=\frac{AB}{AC}=\frac{1}{\sqrt{2}}

  • i.e. \cos A=\frac{1}{\sqrt{2}}

\cos A=\cos 45

  • i.e. A = 45°

So, we have,

\frac{2\tan A}{1+tan^2A}=\frac{2\tan 45}{1+tan^245}

i.e. \frac{2\tan A}{1+tan^2A}=\frac{2\times 1}{1+1^2}

i.e. \frac{2\tan A}{1+tan^2A}=\frac{2}{2}

i.e. \frac{2\tan A}{1+tan^2A}=1

Hence, the value of \frac{2\tan A}{1+tan^2A} is 1.

Attachments:
Similar questions