in a right angle triangle ABC right angled at b if the ratio of ab to ac is 1:rrot 2 then find the valu of 2tan A/ 1_tan2A
Answers
Answered by
0
Answer:
The value of \frac{2\tan A}{1+tan^2A}
1+tan
2
A
2tanA
is 1.
Step-by-step explanation:
We are given that,
In right triangle ABC, the ratio AB : AC = 1 : \sqrt{2}AB:AC=1:
2
.
So, from the figure below, we get that,
\cos A=\frac{AB}{AC}=\frac{1}{\sqrt{2}}cosA=
AC
AB
=
2
1
i.e. \cos A=\frac{1}{\sqrt{2}}cosA=
2
1
\cos A=\cos 45cosA=cos45
i.e. A = 45°
So, we have,
\frac{2\tan A}{1+tan^2A}=\frac{2\tan 45}{1+tan^245}
1+tan
2
A
2tanA
=
1+tan
2
45
2tan45
i.e. \frac{2\tan A}{1+tan^2A}=\frac{2\times 1}{1+1^2}
1+tan
2
A
2tanA
=
1+1
2
2×1
i.e. \frac{2\tan A}{1+tan^2A}=\frac{2}{2}
1+tan
2
A
2tanA
=
2
2
i.e. \frac{2\tan A}{1+tan^2A}=1
1+tan
2
A
2tanA
=1
Hence, the value of \frac{2\tan A}{1+tan^2A}
1+tan
2
A
2tanA
is 1.
Similar questions