Math, asked by rishikark, 12 hours ago



In a right angle triangle ABC with right angle at B, in which a=24 units, b=25 units and 11012BAC = 0. Then, find cos 6 and tan e. 0​

Attachments:

Answers

Answered by chharenderbana
0

Answer:

\huge \bf {Answer:-}Answer:−

__________________________________

\sf \red {\underline{Given:-}}

Given:−

★ABC is a right angled triangle which is right angled at B

★a=24 units, b= 25 units and <BAC=θ

__________________________________

\sf \blue {\underline{To\: find:-}}

Tofind:−

(i)Cos θ=?

(ii)Tan θ=?

__________________________________

★From the given info,we can observe , that two sides of the right-angled triangle are already given,we can find out the third side

★According to Pythagoras theorem,

\to \tt {Hypotenuse^{2}=Side^{2}+Side^{2}}→Hypotenuse

2

=Side

2

+Side

2

★Where, Hypotenuse is AC=25 units

★and one side BC =24 units

★other side AB=?

\to \tt {(AC)^{2}=(BC)^{2}+(AB)^{2}}→(AC)

2

=(BC)

2

+(AB)

2

\to \tt {(25)^{2}=(24)^{2}+(AB)^{2}}→(25)

2

=(24)

2

+(AB)

2

\to \tt {625=576+AB^{2}}→625=576+AB

2

\to \tt {AB^{2}=625-576}→AB

2

=625−576

\to \tt {AB^{2}=49}→AB

2

=49

\to \tt {AB=\sqrt{49}}→AB=

49

\to \tt {\fbox{AB=7}}→

AB=7

_________________________________

\sf \pink {\underline{Now,}}

Now,

(i)Cos θ=?

★We know,

\to \tt {Cos\:θ=\frac{Base}{Hypotenuse}}→Cosθ=

Hypotenuse

Base

★From the figure,we can observe

Hypotenuse=AC

Base=AB

\to \tt {Cos\:θ=\frac{AB}{AC}}→Cosθ=

AC

AB

\large \implies \green {Cos\:θ=\frac{7}{25}}⟹Cosθ=

25

7

__________________________________

(ii)Tan θ=?

\sf \purple {\underline{We\: know,}}

Weknow,

\to \tt {Tan\:θ=\frac{perpendicular}{Base}}→Tanθ=

Base

perpendicular

perpendicular=BC

Base=AB

\to \tt {Tan\:θ=\frac{BC}{AB}}→Tanθ=

AB

BC

\large \implies \green{Tan\:θ=\frac{24}{7}}⟹Tanθ=

7

24

__________________________________

\sf \orange {\underline{Thence,}}

Thence,

★The values of Cos θ and Tan θ are {\frac{7}{25}and{\frac{24}{7}}}

25

7

and

7

24

respectively.

Answered by shettykannika7
0

Answer:

it's not kannika its kanishk

Similar questions