Math, asked by adityahonavar, 9 months ago

In a right angle triangle, if angle A is acute and cot A = 4/3 , find sin A, cos A and tan A

Answers

Answered by sunnyprajapati99931
1

Answer:

sin a = 3/5

cos a = 4/5

tan a = 3/4

hope its helpful

</p><p>&lt;style type="text/css"&gt;</p><p>#blue{</p><p>margin-top:170px;</p><p>color:blue;</p><p>background:lightgreen;</p><p>padding:20px;</p><p>padding-left:20px;</p><p>width:100px;</p><p>font-size:1.2rem;</p><p>border:4px solid black;</p><p>border-radius:5000px;</p><p>animation-name:noname2;</p><p>position:absolute;</p><p>animation-delay:s;</p><p>animation-duration:4s;</p><p>animation-timing-function:linear;</p><p>animation-iteration-count: infinite;</p><p></p><p>}</p><p>@keyframes noname2{</p><p>from{left:-190px;transform: rotate(0deg);}</p><p>to{left:260px; transform: rotate(490deg);}</p><p>}</p><p>&lt;/style&gt;</p><p>&lt;center&gt;&lt;div&gt;&lt;p id="blue"&gt;GIVE RATING  ⭐⭐⭐&lt;br&gt;⭐⭐&lt;/p&gt;&lt;/div&gt;&lt;/center&gt;</p><p>

Answered by TheProphet
4

Solution :

In a right angle triangle, if angle A is acute angle & cot A = 4/3,so according to the question here attach a diagram of right angle;

\underline{\bf{Explanation\::}}}}

As we know that;

\boxed{\bf{cot\theta=\frac{Base}{Perpendicular} }}}

\longrightarrow\sf{cot \:A= \dfrac{4}{3} =\dfrac{AC}{BC} }

\underline{\boldsymbol{By\:using\:pythagoras\:theorem\::}}}

\mapsto\sf{(Hypotenuse)^{2} = (Base)^{2} + (Perpendicular)^{2} }\\\\\mapsto\sf{(AB)^{2} = (AC)^{2} + (BC)^{2} } \\\\\mapsto\sf{(AB)^{2} = (4)^{2} + (3)^{2} }\\\\\mapsto\sf{(AB)^{2} = 16 + 9}\\\\\mapsto\sf{(AB)^{2} = 25}\\\\\mapsto\sf{AB = \sqrt{25} }\\\\\mapsto\bf{AB = 5\:unit}

Thus;

\bullet\:\sf{sin\:A=\dfrac{Perpendicular}{Hypotenuse} =\dfrac{BC}{AB}  = \boxed{\bf{\frac{3}{5} }}}\\\\\\\bullet\sf{cos\:A=\dfrac{Base}{Hypotenuse} =\dfrac{AC}{AB}  = \boxed{\bf{\frac{4}{5} }}}\\\\\\\bullet\sf{tan\:A=\dfrac{Perpendicular}{Base} =\dfrac{BC}{AC}  = \boxed{\bf{\frac{3}{4} }}}

Attachments:
Similar questions