Math, asked by aparna12876p8v3ox, 10 months ago

in a right angle triangle it is given that angle A is an acute angle and that tan A equals to 5 by 12 find the values of cos to cosec a - cot a​

Attachments:

Answers

Answered by himika05
13

Answer:

 \tan(a)  =  \frac{5}{12}   \\  \cot(a) =  \frac{12}{5}  \\ 1.we \: know \: that \\  { \tan(a) }^{2}  + 1 =  { \sec(a) }^{2}  \\  { \sec(a) }^{2}  =  { (\frac{5}{12}) }^{2}  + 1 \\  { \sec(a) }^{2}  =  \frac{25}{144}  + 1 \\  { \sec(a) }^{2}  =  \frac{25 + 144}{144}  \\  { \sec(a) }^{2}  =  \frac{169}{144}  \\  \sec(a) =  \sqrt{ \frac{169}{144} } \\  \sec(a )   =  \frac{13}{12}  \\   \cos(a)  =  \frac{12}{13}  \\ 2.we \: know \: that \\ \ { \sin(a) }^{2}  +   { \cos(a) }^{2} = 1 \\  { \sin(a) }^{2}  = 1 -  { \cos(a) }^{2}  \\  { \sin(a) }^{2} = 1 -  { (\frac{12}{13} )}^{2}  \\   { \sin(a) }^{2} = 1 -  \frac{144}{169}  \\  { \sin(a) }^{2} =  \frac{169 - 144}{169}    \\  { \sin(a) }^{2}  =  \frac{25}{169}  \\  \sin(a) =  \sqrt{ \frac{25}{169} }      \\  \sin(a) =  \frac{5}{13}  \\  \cosec(a)  =  \frac{13}{5}  \\  \cosec(a)  -  \cot(a)  =  \frac{13}{5}  -  \frac{12}{5}  \\  =  \frac{1}{5}

plz mark it brainliest

Similar questions