Math, asked by milin575gaba, 7 months ago

in a right angle triangle sin =5/13 find all the trigonometric ratios for the triangle​

Answers

Answered by niceanish
2

Step-by-step explanation:

let angle be A so its given sinA=5/13

by Pythagoras theorem we get adjacent side as 12

cosA=12/13

tanA=5/12

secA=13/12

cosecA=13/5

cotA=12/5

Answered by ƦαíηвσωStαƦ
5

\huge{\underline{\underline{\sf{\blue{SOLUTION:-}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\green{Given:-}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • In a right angle triangle \sf{Sin\theta = \dfrac{5}{13}}.

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\green{Find:-}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

  • Find all the trigonometric ratios for the the triangle = ?

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\green{Explanation:-}}}

  • Hypotenuse = 5
  • Perpendicular = 13

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline\purple{By\: Pythagoras\: theorem:-}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar\boxed{\sf{\red{(Hypotenuse)^2 = (Perpendicular)^2 + (Base)^2}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\sf{\underline{\pink{Putting\:the\:values:-}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf {(13)^2 = (5)^2 + (b)^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf {169 = 25 + b^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf {169 - 25 = b^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow \sf {144 = b^2}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\longrightarrow{\gray{ \underbrace{\boxed{\underline{\underline{\blue{ \tt Base = 12 }}}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\:\:\:\:\dag\bf{\underline{\underline \red{Hence:-}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\:\:\footnotesize\bold{\underline{\underline{\sf{\red{The\: trigonometric \:ratios\: for \:the\: triangle \::-}}}}}

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar{\underline{\boxed{\sf\purple{Sin\theta = \dfrac{Perpendicular}{Hypotenuse}}}}} \\\\

\longrightarrow \sf {Sin\theta = \dfrac{5}{13} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar{\underline{\boxed{\sf\purple{Cos\theta = \dfrac{Base}{Hypotenuse}}}}} \\\\

\longrightarrow \sf {Cos\theta = \dfrac{12}{13} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar{\underline{\boxed{\sf\purple{Tan\theta = \dfrac{Perpendicular}{Base}}}}} \\\\

\longrightarrow \sf {Sin\theta = \dfrac{5}{12} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar{\underline{\boxed{\sf\purple{Cot\theta = \dfrac{Base}{Perpendicular}}}}} \\\\

\longrightarrow \sf {Cot\theta = \dfrac{12}{5} }

⠀⠀

\bigstar{\underline{\boxed{\sf\purple{Sec\theta = \dfrac{Hypotenuse}{Base}}}}} \\\\

\longrightarrow \sf {Sin\theta = \dfrac{13}{12} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\bigstar{\underline{\boxed{\sf\purple{Cosec\theta = \dfrac{Hypotenuse}{Perpendicular}}}}} \\\\

\longrightarrow \sf {Cosec\theta = \dfrac{13}{5} }

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀

\rule{200}{2}

Similar questions