Math, asked by nikhilchaugule855, 6 days ago

In a right angle triangle, the length of one side is 4.5 cm and the length of the hypotenuse is 20.5 cm. Find the area of the right triangle.​

Answers

Answered by ItzYourSweetHeart88
47

Step-by-step explanation:

Let, Δ ABC right angle at B.

AB = 4.5 cm

Hypotenuse (AC) = 20.5 cm

BC = x

So,

Area = 1/2 × base × height

= 1/2 × x × 4.5

Therefore, First we have to find the base.

»» AC² = AB² + BC²

BC² = AC² - AB²

x² = (20.5)² - (4.5)²

x² = 420.25 - 20.25

x² = 400 cm

x = √400

x = 20 cm

So, base is 20 cm.

Formula:-

Area = 1/2 × base × height

= 1/2 × 20 × 4.5

= 45 cm²

Hope it helps you.

Answered by mathdude500
37

\large\underline{\sf{Solution-}}

Given that,

In a right angle triangle, the length of one side is 4.5 cm and the length of the hypotenuse is 20.5 cm.

Let assume that the required triangle be ABC, right-angled at A such that, AB = 4.5 cm and BC = 20.5 cm

Now, In right angle triangle ABC,

Using Pythagoras Theorem, we have

\rm \:  {BC}^{2} =  {AB}^{2} +  {AC}^{2}  \\

On substituting the values, we get

\rm \:  {20.5}^{2} =  {4.5}^{2} +  {AC}^{2}  \\

\rm \:  {20.5}^{2}  -   {4.5}^{2} =   {AC}^{2}  \\

\rm \: {AC}^{2}  = (20.5 + 4.5)(20.5 - 4.5) \\  \:  \{ \because \:  {x}^{2} -  {y}^{2}  = (x + y)(x - y) \}

\rm \:  {AC}^{2}  = 25 \times 16 \\

\rm \:  {AC}^{2}  =  {5}^{2} \times  {4}^{2}  \\

\rm\implies \:AC \:  =  \: 20 \: cm \\

[ as AC can never be negative ]

Now,

\rm \: Area_{(\triangle\: ABC)} \:  =  \: \dfrac{1}{2} \times AB \times AC \\

On substituting the value of AB and AC we get

\rm \: Area_{(\triangle\: ABC)} \:  =  \: \dfrac{1}{2} \times 4.5 \times 20 \\

\rm \: Area_{(\triangle\: ABC)} \:  =  \: 4.5 \times 10 \\

\rm\implies \:Area_{(\triangle\: ABC)} = 45 \:  {cm}^{2}  \\

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

\begin{gathered}\begin{gathered}\boxed{\begin {array}{cc}\\ \dag\quad \Large\underline{\bf Formulas\:of\:Areas:-}\\ \\ \star\sf Square=(side)^2\\ \\ \star\sf Rectangle=Length\times Breadth \\\\ \star\sf Triangle=\dfrac{1}{2}\times Base\times Height \\\\ \star \sf Scalene\triangle=\sqrt {s (s-a)(s-b)(s-c)}\\ \\ \star \sf Rhombus =\dfrac {1}{2}\times d_1\times d_2 \\\\ \star\sf Rhombus =\:\dfrac {1}{2}d\sqrt {4a^2-d^2}\\ \\ \star\sf Parallelogram =Base\times Height\\\\ \star\sf Trapezium =\dfrac {1}{2}(a+b)\times Height \\ \\ \star\sf Equilateral\:Triangle=\dfrac {\sqrt{3}}{4}(side)^2\end {array}}\end{gathered}\end{gathered}

Attachments:
Similar questions