In a right angled ABC, angle A = 90°, and AD*BC, prove that AD2 = BD×CD solve by using similarity
Answers
First-Method:-
ABC is a right angled triangle in which angle A=90° and AD is perpendicular
to BC. Thus , In right angled triangle ABC , AB^2+AC^2=BC^2……………(1)
In right angled triangle ADB
AD^2+DB^2=AB^2……………….(2)
In right angled triangle ADC
AD^2+DC^2=AC^2……………….(3)
by adding the eqn. (2) and (3)
2.AD^2+DB^2+DC^2= AB^2+AC^2. , putting AB^2+AC^2=BC^2 from eqn. (1)
2.AD^2+DB^2+DC^2=BC^2. , putting BC=BD+CD
2.AD^2+DB^2+DC^2=(BD+CD)^2
or. 2.AD^2+DB^2+DC^2=BD^2+CD^2+2×BD×CD.
or. 2.AD^2 = 2×BD×CD.
or. AD^2= BD×CD. Proved.
Second -Method:-
In right angled triangle ABC let angle ABC= B then angle ACB= 90°-B .
Thus , in right angled triangle ADC , angle CAD = B.
In right angled triangle ADB. , tanB=AD/BD………………(1)
In right angled triangle CDA. , tanB=CD/AD………………..(2)
From eqn. (1) and (2)
AD/BD= CD/AD
or. AD^2=BD×CD. Proved.
plzzzz mark as brainliest