Math, asked by pikkikusuma1999, 9 months ago

In a right angled isosceles triangle ABC,sinA+sinB+sinC=​

Answers

Answered by supriths4804
0

Answer:

Perimeter of Triangle/ Hypotenuse.

Step-by-step explanation:

sin =opposite side /hypotenuse

sin A +sin B +sin C

BC/AC+AC/AC+AB/AC

(BC+AC+AB)/AC

Perimeter of triangle/Hypotenuse.

Hope this bring a smile in your face

Answered by pulakmath007
1

In a right angled isosceles triangle ABC , sinA + sinB + sinC = 1 + 2

Given :

ABC is a right angled isosceles triangle

To find :

The value of sinA + sinB + sinC

Solution :

Step 1 of 2 :

Find the angles

Since ABC is a right angled isosceles triangle

So three angles are 90°, 45° , 45°

Without any loss of generality we assume that

A = 90°, B = 45° , C = 45°

Step 2 of 2 :

Find the value of sinA + sinB + sinC

sinA + sinB + sinC

= sin 90° + sin 45° + sin 45°

\displaystyle \sf{   = 1 +  \frac{1}{ \sqrt{2} } +  \frac{1}{ \sqrt{2} }  }

\displaystyle \sf{   = 1 +  \frac{1 + 1}{ \sqrt{2} }   }

\displaystyle \sf{   = 1 +  \frac{2}{ \sqrt{2} }   }

\displaystyle \sf{   = 1 +  \sqrt{2} }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. if x cos a=8 and 15cosec a=8sec a then the value of x is

a) 20 b)16 c)17 d)13

https://brainly.in/question/46325503

2. 7 cos 30° + 5 tan 30° + 6 cot 60° is

https://brainly.in/question/46167849

3. 1+ sin2α = 3 sinα cosα, then values of cot α are

https://brainly.in/question/46265791

Similar questions