In a right angled isosceles triangle ABC,sinA+sinB+sinC=
Answers
Answer:
Perimeter of Triangle/ Hypotenuse.
Step-by-step explanation:
sin =opposite side /hypotenuse
sin A +sin B +sin C
BC/AC+AC/AC+AB/AC
(BC+AC+AB)/AC
Perimeter of triangle/Hypotenuse.
Hope this bring a smile in your face
In a right angled isosceles triangle ABC , sinA + sinB + sinC = 1 + √2
Given :
ABC is a right angled isosceles triangle
To find :
The value of sinA + sinB + sinC
Solution :
Step 1 of 2 :
Find the angles
Since ABC is a right angled isosceles triangle
So three angles are 90°, 45° , 45°
Without any loss of generality we assume that
A = 90°, B = 45° , C = 45°
Step 2 of 2 :
Find the value of sinA + sinB + sinC
sinA + sinB + sinC
= sin 90° + sin 45° + sin 45°
━━━━━━━━━━━━━━━━
Learn more from Brainly :-
if x cos a=8 and 15cosec a=8sec a then the value of x is
a) 20 b)16 c)17 d)13
https://brainly.in/question/46325503
2. 7 cos 30° + 5 tan 30° + 6 cot 60° is
https://brainly.in/question/46167849
3. 1+ sin2α = 3 sinα cosα, then values of cot α are
https://brainly.in/question/46265791