Math, asked by ZzyetozWolFF, 5 months ago

In a right-angled triangle, AB = 6cm, BC = 8cm, what is the length of AC ?


Answers

Answered by IdyllicAurora
27

\\\;\underbrace{\underline{\sf{Understanding\;the\;Question\;:-}}}

Here the Concept of Pythagoras Theorem has been used . We see that in a Right Triangle, according to Pythagoras Theorem, the square of the length of Hypotenuse that is the longest side is equal to the sum of squares of other two sides . Using this, let's do the question .

______________________________________________

Formula Used :-

\\\;\boxed{\sf{\pink{(Hypotenuse)^{2}\;=\;\bf{(Base)^{2}\;+\;(Height)^{2}}}}}

______________________________________________

Solution :-

Given,

» AB = Height = 6 cm

» BC = Base = 8 cm

» AC = Hypotenuse

We see here we have to find the length of AC . AC is the Hypotenuse because it is the opposite side to the right angle that is ∠ABC = 90° .

Using the Pythagoras Theorem here, we get,

\\\;\sf{:\rightarrow\;\;(Hypotenuse)^{2}\;=\;\bf{(Base)^{2}\;+\;(Height)^{2}}}

By applying values here, we get

\\\;\sf{:\Longrightarrow\;\;(AC)^{2}\;=\;\bf{(BC)^{2}\;+\;(AB)^{2}}}

\\\;\sf{:\Longrightarrow\;\;(AC)^{2}\;=\;\bf{(8)^{2}\;+\;(6)^{2}}}

\\\;\sf{:\Longrightarrow\;\;(AC)^{2}\;=\;\bf{64\;+\;36}}

\\\;\sf{:\Longrightarrow\;\;(AC)^{2}\;=\;\bf{100}}

\\\;\sf{:\Longrightarrow\;\;(AC)\;=\;\bf{\sqrt{100}}}

\\\;\bf{:\Longrightarrow\;\;AC\;=\;\bf{\green{10\:\;cm}}}

✒ AC = 10 cm

\\\;\underline{\boxed{\tt{Length\;\;of\;\;AC\;=\;\bf{\purple{10\;\;cm}}}}}

______________________________________________

More to know :-

Why is this answer correct ?

We know that a triangle is formed only when the sum of two sides is more than the third side . Here (8 + 6) > 10 . This is means this combination is correct. Even if AC is Hypotenuse its the longest side which is proved as AC > 6,8

So our answer is correct .

Other Formulas Related to Triangle ::

\\\;\sf{\leadsto\;\;Area\;of\;Triangle\;=\;\dfrac{1}{2}\:\times\:Base\:\times\:Height}

\\\:\sf{\leadsto\;\;Area\;of\;Triangle\;=\;\sqrt{s(s\;-\;a)(s\:-\:b)(s\:-\:c)}}

\\\;\sf{\leadsto\;\;Semi\:-\:Perimeter\;of\;\Delta,\;s\;=\;\dfrac{Sum\;of\;all\;sides,\;(a\:+\:b\:+\:c)}{2}}

\\\;\sf{\leadsto\;\;Perimeter\;of\;Triangle\;=\;Sum\;of\;all\;sides}

Formulas related to other plane (2 D) figures ::

\\\;\sf{\leadsto\;\;Area\;of\;Square\;=\;(Side)^{2}}

\\\;\sf{\leadsto\;\;Area\;of\;Rectangle\;=\;Length\:\times\:Breadth}

\\\;\sf{\leadsto\;\;Area\;of\;Parallelogram\;=\;Base\:\times\:Height}

\\\;\sf{\leadsto\;\;Area\;of\;Trapezium\;=\;\dfrac{1}{2}\:\times\:(Sum\:of\:Parallel\:Sides)\:\times\:Height}

Attachments:

ZzyetozWolFF: Thankyou!
DILhunterBOYayus: good
IdyllicAurora: Thanks and welcome :)
ʝεɳყ: Perfect ❤️
IdyllicAurora: Thanks :)
Answered by HA7SH
71

Step-by-step explanation:

\text{\Large\underline{\red{Given:-}}}

\sf Given = \begin{cases} \sf{●\ Length\ of\ AB\ =\ 6cm.} \\ \\ \sf{●\ Length\ of\ BC\ =\ 8cm.} \\ \\ \sf{●\ And\ it\ is\ Right\ angled\ at\ B.} \end{cases}

\text{\Large\underline{\orange{To\ find:-}}}

\sf To\ find = \begin{cases} \sf{●\ In\ this\ question\ we\ have\ to\ find\ the\ length\ of\ AC.} \end{cases}

\text{\Large\underline{\purple{Solution:-}}}

According to Pythagoras Theorem:-

● Addition of square of side AB and BC will equal to square of third side AC that is:-

 \sf{(AB)²\ +\ (BC)²\ =\ (AC)²}

\text{\large\underline{\blue{By\ putting\ the\ values:-}}}

\Longrightarrow  \sf{(8)²\ +\ (6)²\ =\ (AC)²}

\Longrightarrow  \sf{64\ +\ 36\ =\ (AC)²}

\Longrightarrow  \sf{100\ =\ (AC)².}

Now here:-

\Longrightarrow  \sf{(AC)²\ =\ 100}

\Longrightarrow  \sf{AC\ =\ \sqrt{100}}

\Longrightarrow  \sf{AC\ =\ 10cm.}

Hence:-

Length of the side AC is 10cm.

______________________________

Attachments:

Anonymous: good.!
Similar questions