In a right angled triangle ABC, right angled at B, AB=x/2 , BC=x+2 and AC =x+3 . The value of x is
Answers
Answered by
8
Step-by-step explanation:
AB² = AC² + BC² - 2(AC)(BC)cos c
(x + 2)² = (x - 1)² + x² - 2x(x - 1)cos 120
(x + 2)² = (x - 1)² + x² - 2x(x - 1)cos (180 - 60)
(x + 2)² = (x - 1)² + x² - 2x(x - 1)(-cos 60)
(x + 2)² = (x - 1)² + x² + 2x(x - 1) cos 60
(x + 2)² = (x - 1)² + x² + 2x(x - 1)(1/2)
(x + 2)² = (x - 1)² + x² + x(x - 1)
x² + 4x + 4 = (x² - 2x + 1) + x² + x² - x
2x² - 7x - 3 = 0
D = (-7)² - 4(2)(-3) = 73
x = (7 ± √73)/4
Answered by
2
Answer:
10
Step-by-step explanation:
(x+3)^2=(x/2)^2+(x+2)^2{by using Pythagoras theorem}
on solving this we will get
x=10cm
Similar questions