Math, asked by ranawatshivrajkanwar, 8 months ago

In a right angled triangle ABC, right angled at B.

AC = 5m, B = 4m, BC =?​

Answers

Answered by mysticd
8

 Given, In \triangle ABC , \angle B = 90\degree,

 AC = 5\: m \: and \: AB= 4 \: m , BC = ?

/* By Phythagorean theorem */

 \boxed{ \pink{ AC^{2} = AB^{2} + BC^{2}}}

 \implies 5^{2} = 4^{2} + BC^{2}

 \implies 5^{2} - 4^{2} =BC^{2}

 \implies 25 - 16 =BC^{2}

 \implies 9=BC^{2}

 \implies BC = \sqrt{9}

 \implies BC = 3\:m

Therefore.,

 \red{BC }\green {= 3\:m }

•••♪

Answered by ItzCuteboy8
120

Given :-

  • In a right angled triangle ABC, right angled at B. AC = 5m, B = 4m.

To Find :-

  • BC

Solution :-

We know that,

\boxed{\sf AC^{2} = AB^{2} + BC^{2}} \:  \:  (\bf Pythagoras  \: theorem)</p><p>

Substituting the given values we get,

:\implies\sf 5^{2} = 4^{2} + BC^{2}

:\implies\sf 5^{2} - 4^{2} = BC^{2}

:\implies\sf 25 - 16 = BC^{2}

:\implies\sf 9 = BC^{2}

:\implies\sf\cancel- BC^{2} = \cancel- 9

:\implies\sf BC = \sqrt{9}

:\implies\underline{\boxed{\blue{\sf BC = 3\:m}}}

\green{\therefore\sf BC = 3\:m}

Similar questions