Math, asked by sr1621030, 1 month ago

In a right angled triangle ABC with right angle at B, in which a=24 units, b= 25 units and ⟨BAC=0. Then, find cos 0 and tan 0​

Answers

Answered by Anonymous
89

 \huge \bf {Answer:-}

__________________________________

 \sf \red {\underline{Given:-}}

★ABC is a right angled triangle which is right angled at B

★a=24 units, b= 25 units and <BAC=θ

__________________________________

 \sf \blue {\underline{To\: find:-}}

(i)Cos θ=?

(ii)Tan θ=?

__________________________________

★From the given info,we can observe , that two sides of the right-angled triangle are already given,we can find out the third side

★According to Pythagoras theorem,

 \to \tt {Hypotenuse^{2}=Side^{2}+Side^{2}}

★Where, Hypotenuse is AC=25 units

★and one side BC =24 units

★other side AB=?

 \to \tt {(AC)^{2}=(BC)^{2}+(AB)^{2}}

 \to \tt {(25)^{2}=(24)^{2}+(AB)^{2}}

 \to \tt {625=576+AB^{2}}

 \to \tt {AB^{2}=625-576}

 \to \tt {AB^{2}=49}

 \to \tt {AB=\sqrt{49}}

 \to \tt  {\fbox{AB=7}}

_________________________________

 \sf \pink {\underline{Now,}}

(i)Cos θ=?

★We know,

 \to \tt {Cos\:θ=\frac{Base}{Hypotenuse}}

★From the figure,we can observe

Hypotenuse=AC

Base=AB

 \to \tt {Cos\:θ=\frac{AB}{AC}}

 \large \implies \green {Cos\:θ=\frac{7}{25}}

__________________________________

(ii)Tan θ=?

 \sf \purple {\underline{We\: know,}}

 \to \tt {Tan\:θ=\frac{perpendicular}{Base}}

perpendicular=BC

Base=AB

 \to \tt {Tan\:θ=\frac{BC}{AB}}

\large \implies \green{Tan\:θ=\frac{24}{7}}

__________________________________

 \sf \orange {\underline{Thence,}}

★The values of Cos θ and Tan θ are  {\frac{7}{25}and{\frac{24}{7}}} respectively.

Attachments:

MystícPhoeníx: Splendid !! Keep it Up :p
Similar questions