Math, asked by jaevcvlts, 5 months ago

in a right-angled triangle PQR, ∠R=90⁰, if PQ = 30cm, PR = 18cm, find QR​

Answers

Answered by aryansingh80004
2

(i) Given:

PQ = 8 cm

QR = 6 cm

PR = ?

∠PQR = 90°

According to Pythagoras Theorem,

(PR)2 = (PQ)2 + (QR)2

PR2 = 82 + 62

PR2 = 64 + 36

PR2 = 100

∴ PR = √100 = 10 cm

(ii) Given :

PR = 34 cm

QR = 30 cm

PQ = ?

∠PQR = 90°

According to Pythagoras Theorem,

(PR)2 = (PQ)2 + (QR)2

(34)2 = PQ2 + (30)2

1156 = PQ2 + 900

1156 - 900 = PQ2

256 = PQ2

∴ PQ = 16 cm

Answered by VAMPlRE
66

 \sf \huge{Given - }

\sf\angle \: R = 90 \degree , \:  PQ = 30cm \: and \: PR = 18cm

 \huge  \sf \: find \:  -

 \sf \: QR =  ?

 \sf  \huge{Solution - }

 \sf \angle \: PRQ = 90 \degree

 \sf \: by \: pythagoras \: theorem..

 \sf \:  {PQ}^{2}  =  {PR}^{2}  + {QR}^{2}

   \rightarrow\sf{30}^{2}  =  {18}^{2}  +  {QR}^{2}

 \sf \rightarrow \: 900 = 324 +  {QR}^{2}

 \sf \rightarrow\: 900 - 324 =  {QR}^{2}

 \sf \rightarrow \: 576 =  {QR}^{2}

  \sf \rightarrow \: \sqrt{576}  =  {QR}

 \sf \rightarrow \: 24 = QR

 \sf  \therefore \: QR \: is  \:  \bold \green{24 \: cm.}

Similar questions