Math, asked by dj12387, 1 year ago

in a right circular cone the hieght is 3times the radius of Base if volume is 134.75cm² then find the area of base​

Answers

Answered by Anonymous
53

Correct Question :

In a right circular cone the height is 3 times the radius of Base. If volume is 134.75 cm³, then find the area of base.

Solution :

Let the radius of base of the cone be r cm

Height of the cone h = 3 times the radius = 3r cm

Volume of the cone = 134.75 cm³

 \implies  \dfrac{1}{3}\pi {r}^{2} h = 134.75

 \implies  \pi {r}^{2} h =404.25

 \implies   \dfrac{22}{7}   \times {r}^{2} \times  3r =404.25

 \implies   \dfrac{66}{7} {r}^{3} =404.25

 \implies   {r}^{3}  =404.25 \times  \dfrac{6}{22}

 \implies   {r}^{3}  =42.875

 \implies   {r}^{3}  =  \bigg(\dfrac{35}{10}  \bigg)^{3}

 \implies r =  \dfrac{35}{10}  = 3.5

Area of the base of cone = Area of the circle

= πr²

 =  \dfrac{22}{7}  \times  {3.5}^{2}

 =  \dfrac{22}{7}  \times 3.5 \times 3.5

= 22 * 3.5 * 0.5

= 11 * 3.5

= 38.5

i.e Area of the base = 38.5 cm²

Hence, area of the base is 38.5 cm².

Answered by Sharad001
147

Question :-

In a right circular cone the hieght is 3times the radius of Base if volume is 134.75cm² then find the area of base..?

Answer :-

→ Area of base of this cone is 38.5 cm²

To Find :-

→Area of base of circular cone .

Formula used:-

 \star  \:  \: \sf{ \red{volume \: of \: cone(v)} = \orange{  \frac{1}{3}  \pi \:  {r}^{2}  \: h}} \\  \\  \star \sf{ \:  \red{area} \: of \:  \green{base} \: of \:  \orange{circular} \: cone}  = \sf{  \pi \:  {r}^{2} }

Step - by - step explanation :-

Given that ,

  • Volume of cone ( v ) = 134.75 cm²
  • Height (h) = 3 × r

Solution :-

• Volume of cone (v) = 134.75 cm²

apply the given formula ,

 \rightarrow \sf{  \red{\frac{1}{3}}  \pi \: \green{ {r}^{2}  \: h }\:  = \orange{134.75}} \\  \\  \because \sf{  \red{h \:  = 3 \: r}} \\  \therefore \:  \\  \rightarrow \sf{ \blue{\frac{1}{3}   \times  \frac{22}{7} }\red{ \times 3 {r}^{3}}  = 134.75} \\  \\  \rightarrow  \sf{\:  \frac{22}{7}  \red{{r}^{3} } = 134.75} \\  \\  \rightarrow \sf{ 22 {r}^{3}  =\orange{ 943.25} }\\  \\  \rightarrow \sf{  \red{{r}^{3}}  = 42.875} \\  \\  \rightarrow \sf{ {r}^{3}  = \green{ \frac{42875}{1000} }} \\  \\  \rightarrow \sf{  {r}^{3}  =  {  \blue{\bigg(\frac{35}{10} \bigg) }}^{3} } \\  \\  \rightarrow \: \boxed{ \sf{ r \:  = \orange{3.5 \: cm}}}

___________________________

Therefore ,

 \star \: \text{ \orange{area \: of \: base(A) }}=  \sf{\red{ \pi \:  {r}^{2}} } \\  \\  \rightarrow \text{A }\:  =  \sf{ \green{\frac{22}{7}  \times 3.5 \times 3.5}} \\  \\  \rightarrow \text{ A }\:  =  \sf{22 \times 0.5 \times 3.5} \:  \\  \:  \\  \rightarrow \boxed{ \red{\text{A } = 38.5 \:  {cm}^{2}} }

Hence area of base of circular cone is

38.5 cm².

___________________________

Similar questions