Math, asked by haris8118919hr, 1 month ago

In a right triangle ABC,if tan A=4/3,then find the value of sec A​

Answers

Answered by XxItzAnvayaXx
5

FINAL ANSWER:-

secA=\frac{5}{3}

GIVEN:-

right triangle ABC tanA=\frac{4}{3}

TO FIND:-

value of sec A

FORMULAS USED:-

tanA=\frac{perpendicular}{base}

secA=\frac{hypotenuse}{base}

(hypogenous)^{2} =(perpendicular) ^{2}+(base)^{2}

SOLUTION:-

tanA=\frac{4}{3} ⇒  tanA=\frac{BC}{AB}tanA=\frac{perpendicular}{base}

secA=\frac{AC}{AB}secA=\frac{hypotenuse}{base}secA=\frac{AC}{3}

as here perpendicular is 4 and base is 3 , but hypotenuse (CA) is ?

so using pythagoras theorem find AC

AC^{2}=BC^{2}+AB^{2}\\AC^{2}=4^{2}+3^{2}\\AC^{2}=16+9\\AC^{2}=25\\AC=\sqrt{25}\\AC=5

as we get AC lets put in  secA=\frac{AC}{3}

secA=\frac{5}{3}

⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔⇔

Attachments:
Answered by Anonymous
0

maihuunknown ne sahi answer diya hai use brainlist bana do aur use follow kar lo

Similar questions