In a right triangle ABC right angled at A, D is any point on AB. Prove that DC^2 = BC^2 + BD^2 - 2AB ×BD
Answers
In right ∆ ABC we get,
→ BC² = AB² + AC² [Pythagoras Theorem]
→ 0 = BC² - AB² - AC² __(1)
In right ∆ ACD we have,
→ CD² = AC² + AD² [Pythagoras Theorem] __(2)
On adding both equations we get,
→ CD² = AC² + AD² + BC² - AC² - AB²
→ CD² = BC² + AD² - AB²
→ CD² = BC² + (AB - BD)² - AB²
→ CD² = BC² + AB² + BD² - 2 · AB · BD - AB²
→ CD² = BC² + BD² - 2·AB·BD
Q.E.D
GIVEN: A right ∆ABC, right angled at A; having a point D on AB.
Prove: DC² = BC² + BD² - 2AB × BD
Proof:
In ∆ABC
By Pythagoras theoram
→ BC² = AB² + AC² ________ (eq 1)
In ∆ACD
By Pythagoras theoram
→ DC² = AC² + AD² ________ (eq 2)
Sub (eq 1) from (eq 2)
→ DC² - BC² = AC² + AD² - AB² - AC²
→ DC² - BC² = AD² - AB²
Now..
AD = AB - BD
→ DC² - BC² = (AB - BD)² - AB²
→ DC² - BC² = AB² + BD² - 2AB × BD - AB²
→ DC² - BC² = BD² - 2AB × BD
→ DC² = BC² + BD² - 2AB × BD
__________ [ PROVED ]
_____________________________