English, asked by Anonymous, 23 days ago

In a right triangle ABC, right angled at B, find AC, if (i) AB = 10 cm. BC = 24 cm (ii) AB = 7 cm, BC = 24 cm​

Answers

Answered by ThePious
6

Given :

A right triangle ABC, right angled at B .

  • (i) AB = 10 cm. BC = 24 cm .
  • (ii) AB = 7 cm, BC = 24 cm .

To Find :

  • Length of AC ?

Solution :

(i) AB = 10 cm. BC = 24 cm :

Using Pythagoras Theorem :

\longmapsto\tt{{(AC)}^{2}={(AB)}^{2}+{(BC)}^{2}}

\longmapsto\tt{{(AC)}^{2}={(10)}^{2}+{(24)}^{2}}

\longmapsto\tt{{AC}^{2}=100+576}

\longmapsto\tt{{AC}^{2}=676}

\longmapsto\tt{AC=\sqrt{676}}

\longmapsto\tt\bf\purple{AC=26\:cm}

(ii) AB = 7 cm, BC = 24 cm :

Using Pythagoras Theorem :

\longmapsto\tt{{(AC)}^{2}={(AB)}^{2}+{(BC)}^{2}}

\longmapsto\tt{{(AC)}^{2}={(7)}^{2}+{(24)}^{2}}

\longmapsto\tt{{AC}^{2}=49+576}

\longmapsto\tt{{AC}^{2}=625}

\longmapsto\tt{AC=\sqrt{625}}

\longmapsto\tt\bf\pink{AC=25\:cm}

Answered by Akshaya890
4

Answer:

as 24 square 576 and addition of 100 gives 676 which is 26 square..

and same adding 49 to 576 for next q gives 625 which is the square of 25.

Hope it helps you sister naanum Tamil dhaa.

Mark brainly if helped.

Similar questions