Math, asked by yashsharmackt, 11 months ago

in a right triangle ABC right angled at C,Cos A=1/2,Find value of Sin A.

Solve it pls​

Attachments:

Answers

Answered by syedaasma0841
3

Step-by-step explanation:

I hope it helps.......

Attachments:
Answered by BrainlyConqueror0901
2

\blue{\bold{\underline{\underline{Answer:}}}}

\green{\tt{\therefore{sin\:A=\frac{\sqrt{3}}{2}}}}\\

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

 \green{\underline \bold{Given :}} \\  \tt:  \implies cos \: A =  \frac{1}{2}  \\  \\  \tt:  \implies  \angle C = 90 \degree \\  \\ \red{\underline \bold{To \: Find :}} \\  \tt:  \implies sin \: A = ?

• According to given question :

 \bold{As \: we \: know \: that} \\  \tt:  \implies cos \: A =  \frac{1}{2}  \\  \\  \tt \circ \: cos \: 60 \degree =  \frac{1}{2}  \\  \\  \tt:  \implies cos \: A= cos \: 60  \degree \\  \\  \tt:  \implies  \angle A = 60 \degree \\  \\  \bold{For \: finding \: value : } \\ \tt:  \implies sin \: A \\  \\ \tt:  \implies sin \: 60 \degree \\  \\  \green{\tt:  \implies  \frac{ \sqrt{3} }{2} } \\  \\  \green{\tt \therefore sin \: A=  \frac{ \sqrt{3} }{2} } \\  \\  \bold{Alternate \: method : } \\  \tt:  \implies cos \:A =  \frac{b}{h}  \\  \\ \tt:  \implies  \frac{1}{2} =  \frac{b}{h}   \\  \\  \tt \circ \: b = 1  \\  \\  \tt \circ \: h = 2 \\  \\  \bold{Using \: Phythagoras \: theorem : } \\ \tt:  \implies  {h}^{2}  =  {p}^{2}  +  {b}^{2}  \\  \\ \tt:  \implies  {2}^{2}  =  {p}^{2}  +  {1}^{2}  \\  \\ \tt:  \implies 4 - 1 =  {p}^{2}  \\  \\ \tt:  \implies p =  \sqrt{3}  \\  \\  \bold{For \:finding \: value : } \\ \tt:  \implies sin \: A =  \frac{p}{h}  \\  \\  \green{\tt:  \implies sin \: A =  \frac{ \sqrt{3} }{2}}

Similar questions