In a right triangle ABC, right-angled at c, if tan A = 1, then verify that sec A cosec A=2.
Answers
Answer:
secA.cosecA = 2
Step-by-step explanation:
= > tanA = 1 ; tanA = 1
= > tanA = tan45° ; sinA / cosA = 1
= > A = 45° ; sinA = cosA
= > A = 45° ; 1 / sinA = 1 / cosA = secA = cosecA
Here,
= > secAcosecA
= > ( 1 / cosA )( 1 / sinA )
= > ( 1 / cosA )( 1 / cosA )
= > ( 1 / cos^2 A )
= > 1 / cos^2 45°
= > 1 / ( 1 /√2 )^2
= > 2
Hence,now, it's verified that in a right triangle ABC, right-angled at c, if tan A = 1, then verify that sec A cosec A=2.
Question :-- In a right triangle ABC, right-angled at c, if tan A = 1, then verify that sec A cosec A=2.
Formula used :--
→ tan45° = 1
→ sec45° = √2
→ cosec45° = √2
Solution :--
given, tan A = 1 ,
putting 1 = tan45° we get ,
→ tanA = tan45°
comparing now we get,
→ A = 45° ---------- Equation (1)
Now, we have to find , sec A cosec A = ?
→ sec A cosec A
Putting value of A From Equation (1) we get,
→ Sec45°* cosec45°
Putting values now we get,
→ (√2) * (√2)
→ 2
✪✪ Hence Proved ✪✪
So,