Math, asked by jiyakakadiya, 11 hours ago

In a right triangle ABC, right angles at B, If tan = 1, then verify that 2sinAcosA = 1

Answers

Answered by sukanyachandra88
1

Step-by-step explanation:

In right triangle ABC

Angle C=90 degree

tan A=1

To verify that

2sin Acos A=12sinAcosA=1

Solution:

tan A=1

tan A=\frac{Perpendicular\;side}{Base}=\frac{1}{1}tanA=

Base

Perpendicularside

=

1

1

BC=k

AC=k

Using Pythagoras theorem

(Hypotenuse)^2=(Perpendicular)^2+(Base)^2(Hypotenuse)

2

=(Perpendicular)

2

+(Base)

2

AB^2=AC^2+BC^2AB

2

=AC

2

+BC

2

AB^2=k^2+k^2=2k^2AB

2

=k

2

+k

2

=2k

2

AB=\sqrt{2k^2}=k\sqrt{2}AB=

2k

2

=k

2

Sin A=\frac{Perpendicular\;side}{Hypotenuse}=\frac{BC}{AB}=\frac{k}{k\sqrt{2}}=\frac{1}{\sqrt{2}}SinA=

Hypotenuse

Perpendicularside

=

AB

BC

=

k

2

k

=

2

1

cos A=\frac{Base}{Hypotenuse}=\frac{AC}{AB}=\frac{k}{k\sqrt{2}}=\frac{1}{\sqrt{2}}cosA=

Hypotenuse

Base

=

AB

AC

=

k

2

k

=

2

1

Substitute the values

2sinAcos A=2\times \frac{1}{\sqr{2}}\times \frac{1}{\sqrt{2}}2sinAcosA=2×

\sqr2

1

×

2

1

2sinA cos A=\frac{2}{(\sqrt{2})^2}=\frac{2}{2}2sinAcosA=

(

2

)

2

2

=

2

2

2sinA cos A=12sinAcosA=1

Hence, verified.

Attachments:
Similar questions