in a right triangle having sides equal to 5cm ,12cm and 13cm the length of the altitude drawn on the hypotenuse will be
Answers
Step-by-step explanation:
I couldn't type in here so have attached a photo
Solution :-
we know that,
- Area of ∆ = (1/2) * Base * Perpendicular height .
so,
→ Area of right angled ∆ = (1/2) * 12 * 5 = 30 cm²
now, let us assume that, the length of the altitude drawn on the hypotenuse is x cm .
then,
→ Area of right angled ∆ = (1/2) * hypotenuse * altitude .
A/q,
→ (1/2) * 13 * x = 30
→ 13x = 60
→ x = (60/13) cm (Ans.)
Hence, the length of the altitude drawn on the hypotenuse is (60/13) cm .
Shortcut :-
- Length of of the altitude drawn on the hypotenuse of a right angled ∆ = (P * B)/H
given that,
→ P(perpendicular) = 5
→ B(Base) = 12
→ H(Hypotenuse) = 13
so,
→ Length of of the altitude drawn on the hypotenuse of a right angled ∆ = (P * B)/H = (5 * 12)/13 = (60/13) cm (Ans.)
Learn more :-
triangle PQR measure PQR =90 degree and the length of the hypotenuse PR is 13cm find PQ square + QR square. with solutio...
https://brainly.in/question/36476505
Q.3 Find x so that the triangle shown below is a right triangle
16x
(2 MARKS
https://brainly.in/question/36234424
https://brainly.in/question/37046697