In a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides
Answers
--》Right triangle ABC right angled at B
--》AC² = AB² + BC²
--》Draw BD perpendicular to AC
Now,
--》ADB ~ ABC
(ADB~ABC ----》 If a perpendicular is drawn from the vertex if the right angle of a right triangle to the hypotenuse then triangles on both sides of the perpendicular are similar to the whole triangle and to each other.)
--》AD/AB = AB/ AC (Sides are proportional)
(Or)
--》AD . AC = AB² (1)
Also,
--》BDC ~ ABC (Above mentioned)
--》CD/BC = BC/AC
(Or)
--》CD.AC = BC² (2)
Adding 1 and 2
--》AD .AC + CD .AC = AB²+ BC²
--》AC (AD+CD) = AB² + BC²
--》AC. AC = AB² + BC²
--》AC² = AB² + BC²
HENCE PROVED
Given:-
A right triangle ABC right angled at B.
To prove:-
AC² =AB ² +BC²
Construction:-
Draw BD⊥AC
Proof:-
In △ABC and △ABD
∠ABC=∠ADB(Each 90°)
∠A=∠A(Common)
∴△ABC∼△ABD(By AA)
=
(∵Sides of similar triangles are proportional)
⇒AB²
=AD⋅AC.....(1)
Similarly, in △ABC and △BCD
∠ABC=∠BDC(Each 90°)
∠C=∠C(Common)
∴△ABC∼△BCD(By AA)
∴
=
⇒BC²
=DC⋅AC.....(2)
Adding equation (1)&(2), we have
AB² +BC²
=AD⋅AC+DC.AC
⇒AB² +BC²
=AC(AD+DC)
⇒AB²+BC²
=AC²
Hence proved.