Math, asked by raghavmummy327, 21 days ago

In a right triangle, the two smaller angles are in the ratio 1:4. Compute these angles

Answers

Answered by Anonymous
8

Given :

  • Two smaller angles are in the ratio 1:4 .

 \\ \rule{200pt}{3pt}

To Find :

  • The angles = ?

 \\ \rule{200pt}{3pt}

Solution :

 \dag \; {\underline{\pmb{\frak{ We \; know \; That \; :- }}}}

In a Right angled triangle one angle is 90° .And the rest two angles are in the ratio 1:4 as we have been provided in the question .

 \\ \qquad{\rule{150pt}{1pt}}

 \dag \; {\underline{\pmb{\frak{ Let \; the \; Ratios \; :- }}}}

  • ➟ ∠1 = 90°
  • ➟ ∠2 = 1y°
  • ➟ ∠3 = 4y°

 \\ \qquad{\rule{150pt}{1pt}}

 \dag \; {\underline{\pmb{\frak{ Angle \; Sum \; property \; :- }}}}

  •  {\underline{\boxed{\red{\sf{ Sum \; of \; Angles{\small_{(Triangle)}} = 180° }}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag \; {\underline{\pmb{\frak{ Calculating \; the \; value \; of \; y \; :- }}}}

 {\dashrightarrow{\qquad{\sf{ ∠1 + ∠2 + ∠3 = 180° }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 90° + 1y° + 4y° = 180° }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 90° + 5y° = 180° }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 5y° = 180° - 90° }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ 5y° = 90° }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ y = \dfrac{90}{5} }}}} \\ \\ \\ \ {\dashrightarrow{\qquad{\sf{ y = \cancel\dfrac{90}{5} }}}} \\ \\ \\ \ {\qquad \; \; {\therefore \; {\underline{\boxed{\pmb{\pink{\frak{ y = 18° }}}}}}}}

 \\ \qquad{\rule{150pt}{1pt}}

 \dag \; {\underline{\pmb{\frak{ Calculating \; the \; Angles \; :- }}}}

  • ➳ ∠2 = 1y = 1(18) = 18°
  • ➳ ∠3 = 4y = 4(18) = 72°

 \\ \qquad{\rule{150pt}{1pt}}

 \dag \; {\underline{\pmb{\frak{ Therefore \; :- }}}}

❛❛ The other two angles are 18° and 72° . ❜❜

 \\ {\underline{\rule{300pt}{9pt}}}

Similar questions