Math, asked by upadhyaykumarravi198, 10 months ago

In a rigt triangle ABC right angled at B. If tan A=1,then verify that 2 sin A cos A =1.

Answers

Answered by siddharth015shukla
0

Tan A=sinA/cosA=1

=>SinA=cosA

=>Angle A=45°(as SinA=cosA so base=perpendicular)

2sinAcosA=2*1/√2*1/√2

=1

Answered by umiko28
0

\huge\underline{ \underline{ \red{your \: \: answer}}} \sf\pink{tan \:A  = 1 } \\  \sf\pink { =  > \frac{sin \: A}{cos \: A} = tanA } \\  \sf\pink{  =  > \frac{sin \: A}{cos \: A} = 1 } \\  \sf\pink{ =  > sin \: A = cos \: A} \\  \sf\pink{ =  > sin \: 45° = cos \: 45°} \\  \sf\pink{ =  > a = 45°} \: ( \sin\alpha    =  \cos \alpha \: when \:  \alpha  = 45°) \sf\pink{2sin \: A \: cos \: A } \\  \sf\pink{ =  > 2sin45°cos45°} \\  \sf\pink{ =  > 2 \times  \frac{1}{ \sqrt{2} } \times  \frac{1}{ \sqrt{2} }  } \\  \sf\pink{ =  >  \frac{2}{ \sqrt{2} \times  \sqrt{2}  } } \\  \sf\pink{  =  > \frac{2}{ \sqrt{4} } } \\  \sf\pink{ =  >  \frac{2}{2} } \\  \sf\pink{ =  > 1} \\  \sf\pink{LHS = RHS}

\large\boxed{ \fcolorbox{red}{yellow}{hope it help you}}

Similar questions