Math, asked by upadhyaykumarravi198, 11 months ago

In a rigt triangle ABC right angled at B. If tan A=1,then verify that 2 sin A cos A =1.

Answers

Answered by rupalikondekar1
1

Step-by-step explanation:

I hope this will help u.

If so, please mark me as brainliest..

Attachments:
Answered by umiko28
1

\huge\underline{ \underline{ \red{your \: \: answer}}} \\  \sf\pink{tan \:A  = 1 } \\  \sf\pink { =  &gt; \frac{sin \: A}{cos \: A} = tanA } \\  \sf\pink{  =  &gt; \frac{sin \: A}{cos \: A} = 1 } \\  \sf\pink{ =  &gt; sin \: A = cos \: A} \\  \sf\pink{ =  &gt; sin \: 45° = cos \: 45°} \\  \sf\pink{ =  &gt; a = 45°} \:\: \\( \sin\alpha    =  \cos \alpha \: when \:  \alpha  = 45°) \\</p><p>\sf\pink{2sin \: A \: cos \: A } \\  \sf\pink{ =  &gt; 2sin45°cos45°} \\  </p><p>\sf\pink{ =  &gt; 2 \times  \frac{1}{ \sqrt{2} } \times  \frac{1}{ \sqrt{2} }  } \\  \sf\pink{ =  &gt;  \frac{2}{ \sqrt{2} \times  \sqrt{2}  } } \\  \sf\pink{  =  &gt; \frac{2}{ \sqrt{4} } } \\  \sf\pink{ =  &gt;  \frac{2}{2} } \\  \sf\pink{ =  &gt; 1} \\  \sf\pink{LHS = RHS} \\ \\ </p><p>\large\boxed{ \fcolorbox{red}{yellow}{hope it help you}}

Similar questions