In a rite triangle ABC, rite angled at B. D is any point on BC , then prove that AC2 = AD2 + DC2 +2BD.DC
Answers
Answered by
8
triangle ABD is also right angle triangle
therefore AB² + BD² = AD²
⇒AB² = AD² - BD² .............(i)
now, AC² = AB² + BC²
⇒AC² = AD² - BD² + (BD + DC)²
⇒AC² = AD² - BD² + BD² + 2BC.BD + DC²
⇒AC² = AD² + DC² + 2BD.DC
hence proved
therefore AB² + BD² = AD²
⇒AB² = AD² - BD² .............(i)
now, AC² = AB² + BC²
⇒AC² = AD² - BD² + (BD + DC)²
⇒AC² = AD² - BD² + BD² + 2BC.BD + DC²
⇒AC² = AD² + DC² + 2BD.DC
hence proved
Answered by
4
Answer:
In ∆ABD,
By Pythagoras theorem
-> AB² + BD² = AD²
AB² = AD² - BD² .....(1)
In ∆ABC,
By Pythagoras theorem
-> AC² = AB² + BC²
AC² = (AD² - DB²) + (BD + DC)² [ From (1) and BC = BD + DC ]
AC² = AD² - BD² + BD² + DC² + 2(DB)(DC)
AC² = AD² + CD² + 2(BD)(DC)
.......................Hence proved....................
Attachments:
Similar questions