Physics, asked by afreenb1647, 11 months ago

In a ruby laser, total number of Cr^3- ions is 2.8*10^19. If the laser emits radiation of wavelength 7000A°. Calculate the energy of laser pulse.

Answers

Answered by mad210219
36

Given-:

Total number of Cr^3- ions= 2.8\times 10^{19}

Laser emits radiation of wavelength =7000A°.

To find-:

Energy of the laser pulse.

Solution-:

Here; we have:

Using formula-:

E=\frac{hc}{\lambda}

We know the values of:

Planck's constant i.e h=6.626 x 10^{-34}J.s

Speed of light c=3 x 10^8 m/s.

According to the question we have:

Wavelength \lambda\\= 7000A° = 7000 x 10^{-10} m.

Hence, by putting in the formula we get:

E=\frac{(6.626 \times 10^{-34}J.s \times 3 \times 108 m/s)}{7000} \times 10^{-10m}

By calculating we get:

E=2.8 \times 10^{-19}J.  

The energy of laser pulse=  2.8 \times 10^{-19}J.

Answered by prachikalantri
3

Given-:

Total number of Cr^3- ions= 2.8\times 10^{19}

The laser emits radiation of wavelength =7000A°.

To find-:

Energy of the laser pulse.

Solution-:

Here; we have:

Using formula-:

E=\frac{hc}{\lambda}

We know the values of:

Planck's constant i.e h=6.626 \times J.s

Speed of light c=3 x  m/s.

According to the question we have:

Wavelength = 7000A° = 7000 x  m.

Hence, by putting in the formula we get:

E=\frac{(6.626\times 10^{34}J.s \times 3\times 108m/s)}{7000}\times 10^{-10m}

By calculating we get:

E=2.8\times 10^{-19}J

The energy of laser pulse=  2.8\times 10^{19}J.

#SPJ2

Similar questions