In a series , if tn = n²-1/n+1 , then S6-S8=
Answers
Answered by
0
Answer: -13
Step-by-step explanation:
tₙ = (n²-1)/(n+1)
∴, t₁ = (1²-1)/(1+1) = 0
t₆ = (6²-1)/(6+1) = 35/7 = 5
t₈ = (8²-1)/(8+1) = 63/9 = 7
Now, Sₙ = (n/2) x (t₁ + tₙ)
So, S₆ = (6/2) x (t₁ + t₆) = 3 x (0 + 5) = 15
S₈ = (8/2) x (t₁ + t₈) = 4 x (0 + 7) = 28
∴, S₆ - S₈ = 15 - 28 = -13
Similar questions