In a sphere made of an alloy, copper and tin are in the ratio 86:14. In a sphere made of another alloy, copper and zinc are in the ratio 58:42. Find the ratio of tin and zinc in the sphere made by melting the two spheres.
मिश्रधातू बनवलेल्या गोलामध्ये, तांबे आणि कथील 86:14 च्या गुणोत्तरामध्ये असतात. दुसर्या धातूपासून बनवलेल्या गोलामध्ये, तांबे आणि जस्त 58:42 च्या गुणोत्तरामध्ये आहेत. मेलने बनवलेल्या गोलामध्ये कथील आणि जस्त यांचे गुणोत्तर शोधा
मिश्र धातु से बने एक गोले में तांबा और टिन का अनुपात 86:14 है। एक अन्य मिश्रधातु से बने गोले में तांबा और जस्ता का अनुपात 58:42 है। मेल द्वारा बनाए गए गोले में टिन और जिंक का अनुपात ज्ञात कीजिए
એલોયથી બનેલા ગોળામાં, તાંબુ અને ટીન 86:14 ના ગુણોત્તરમાં છે. અન્ય એલોયથી બનેલા ગોળામાં, તાંબુ અને જસત 58:42 ના ગુણોત્તરમાં છે. મેલ દ્વારા બનાવેલા ગોળામાં ટીન અને ઝીંકનો ગુણોત્તર શોધો
Answers
Answer:
Answer:
Given that
Ratio of copper and tin in the first alloy is 86:14.
Ratio of copper and zinc in the second alloy is 58:42.
Let us convert them into parts out of the whole.
For first sphere:
Total no of parts =86+14=100
We have 86 parts of copper out of 100 parts present.
Also we have 14 parts of tin out of 100 parts present.
For second sphere:
Total no of parts =58+42=100
We have 58 parts of copper out of 100 parts present.
Also we have 42 parts of zinc out of 100 parts present.
Now given that both the spheres are melted to form a new sphere.
For the new sphere:
Total no of parts present =100+100=200
Parts of copper in this 200 parts is =86+58=144
The tin present in 200 parts is 14 parts.
Parts of zinc present in these 200 parts is 42.
Now as we have parts of each metal in the melted sphere, let us find the ratio of tin and zinc.
Ratio of tin and zinc is the same as the ratio of their parts present in the melted sphere.
=1442
Let us further simplify the ratio.
=13
Hence, the ratio of tin and zinc in the sphere made by melting the two spheres is 1:3.
Hope this helps.Please mark me as brainliest.