Math, asked by wayza123bari, 4 months ago

In a square ABCD. AB= (2x+3) cm and BC
= (3x - 5) cm. Then, the value of x is
(a) 5
(b) 7
(c) 8
(d) 10​

Answers

Answered by majokabutt555
2

Answer:

8

for square

3x-5= 2x+3

3x-2x= 3+5

x= 8

Answered by CɛƖɛxtríα
102

___________________________________

Given:

  • \sf{A\:square\:ABCD}
  • \sf{AB= (2x+3)}
  • \sf{BC= (3x-5)}

To find:

  • The value of \bold{x}

Solution:

As we know all sides of a square are equal, we can form a equation to find the value of \bold{x}.

\large{\underline{\boxed{\sf{\red{(3x-5)=(2x+3)}}}}}

\sf\implies 3x-2x=3+5

\sf\implies x=8

  • \large{\boxed{\sf{\green{x=8}}}}

Verification:

To verify, insert 8 in places of x in the expression formed.

\sf\implies (2 \times 8 + 3) = (3 \times 8 - 5)

\sf\implies (16 + 3) = (24 - 5)

\sf\implies 19 = 19

\bold{\implies L.H.S = R.H.S}

  • \large{\underline{\underline{\tt{\blue{Hence,\: verified\:!}}}}}

Final Answer:

  • The value of \bold x is \normalsize{\boxed{\bold{\red{8}}}}
  • Option - c

___________________________________

Similar questions