Math, asked by bharathivedanta, 1 year ago

In a square ABCD, T, U, V and W are points on side AB, AD, CD and BC such that AT: AB = AU: UD = CV: VD = CW: WB = 2:1. Further Z and X are midpoints of UT and UV respectively, while Y is a point on TW such that TY: YW = 1:2. Find the ratio of the area of the triangle XYZ to that of the square ABCD.

Answers

Answered by kvnmurty
1
Ans:  5:54

There is a small mistake in the given problem.  That should be AT: TB = 2:1 rather than AT :AB.

see the diagram.  

We use Pythagoras theorem repetitively to find the answer.  

We find the sides of the triangle XYZ first.  Then we apply Heron’s Formula for area of triangle.  Let us assume AB = BC = CD = DA = 3 units without loss of generality.

Area of square ABCD = 3
² = 9

UV = √2   =>  UX = √2/2 = 1/√2

UT= 2√2   =>  UZ = TZ = √2

XZ = √[UX²+UZ²] = √5/√2 = 1.58


TW=√2      TY = TW/3 = √2/3
YZ = √[TZ²+TY²]  = 2√5 / 3 = 1.49

YE = TE - TY = TW/2 - TY = 1/√2  -  √2/3 = 1/(3√2)
XE = UT = 2√2
XY = √[XE²+ YE²] = √[8+1/18] =  √29 *√5 / 3√2 = 2.83

Now semiperimeter s of triangle XYZ = s 
s = [√5 *√29 / 3√2 + 2 √5 / 3 + √5 /√2 ] /2
   = [ √29 + 2√2 + 3 ] * √5 / (6√2)

   = 2.955

Area of triangle xyz = √[s(s-a)(s-b)(-c) = 0.8625

Ratio = 0.8625 / 9 = 0.0958
============================


Simpler way:

  We find the areas of the triangles in the square. We subtract all those from Area of ABCD, to get that of XYZ.


Apply area of triangle = 1/2 * base * altitude

Area of Triangle UXZ   = 1/2 * 1/√2 * √2 = 1/2
Area of Triangle  TYZ  = 1/2 * √2 * √2/3  = 1/3
Area of Triangle  XYE  = 1/2 * 2√2 * √2/ 6 = 1/3
Area of Triangle XYZ = Area UTEX -  (area UXZ + area TYZ + area XYE)
      = 2√2 * 1/√2   - (1/2+1/3+ 1/3)
      = 2 - 7/6 = 5/6

Area of Square ABCD = 3² = 9

Ratio = (5/6) / 9 =    5 / 54

Attachments:

kvnmurty: clik on thanks.. select best ans.
Similar questions