Math, asked by chandanamanju456, 1 year ago

in a survey of 600 students in a school 150 students were found to be taking tea and 225 taking coffee hundred word taking board tea and coffee find how many students were taking neither 3 or coffee​

Answers

Answered by ArcaneZeref
2

Step-by-step explanation:

substract the total number of students taking all the materials ...by total number of students.u get 125(answer)

Answered by Anonymous
215

{ \huge{\boxed{\tt {\color{red}{Answer}}}}}

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Given,

Total number of students = 600

Number of students who were drinking Tea = n(T) = 150

Number of students who were drinking Coffee = n(C) = 225

Number of students who were drinking both Tea and Coffee = n(T ∩ C) = 100

n(T U C) = n(T) + n(C) – n(T ∩ C)

= 150 + 225 -100

= 375 – 100

= 275

Hence, the number of students who are drinking neither Tea nor Coffee = 600 – 275 = 325

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗‗

Hope It's Helpful.....:)

Similar questions