Physics, asked by viratsusanth18, 10 months ago

in a tangent galvanometer a current of 1 ampere produces deflection of 30 degree the current required to produce a deflection of 60°​

Answers

Answered by Anonymous
82

\huge\underline{\underline{\bf \orange{Question-}}}

In a tangent galvanometer a current of 1 ampere produces deflection of 30 degree the current required to produce a deflection of 60°

\huge\underline{\underline{\bf \orange{Solution-}}}

\large\underline{\underline{\sf Given:}}

  • Current {\sf (i_1)} = 1A
  • Deflection {(\theta_1)} = 30°
  • Deflection {(\theta)} = 60°

\large\underline{\underline{\sf To\:Find:}}

  • Current required to produce deflection of 60° {\sf (i_2)}.

For tangent galvanometer relationship between Current and deflection angle is given by

\large{\boxed{\bf \blue{I=ktan\theta}  }}

Here, k = constant

⠀⠀⠀⠀i = Current

⠀⠀⠀⠀{\theta} = angle of deflection

We can say that

\large{\bf \blue{I\:\:\alpha\:\:tan\theta} }

\implies{\sf \dfrac{i_1}{i_2}=\dfrac{tan\theta_1}{tan\theta_2}  }

\implies{\sf \dfrac{1}{i_2}=\dfrac{tan30°}{tan60°}}

tan30° = {\sf \dfrac{1}{\sqrt{3}}}

tan60° = {\sf \sqrt{3}}

\implies{\sf \dfrac{1}{i_2}=\dfrac{1/\sqrt{3}}{\sqrt{3}}}

\implies{\sf \dfrac{1}{i_2}=\dfrac{1}{3}}

\implies{\bf \red{ i_2=3\:A}}

\huge\underline{\underline{\bf \orange{Answer-}}}

Current required to produce a deflection of 60° is {\bf \red{3\:A}}.

Answered by sujindrakumarsingh
1

Answer:

Iαtanθ

\implies{\sf \dfrac{i_1}{i_2}=\dfrac{tan\theta_1}{tan\theta_2} }⟹

i

2

i

1

=

tanθ

2

tanθ

1

\implies{\sf \dfrac{1}{i_2}=\dfrac{tan30°}{tan60°}}⟹

i

2

1

=

tan60°

tan30°

tan30° = {\sf \dfrac{1}{\sqrt{3}}}

3

1

tan60° = {\sf \sqrt{3}}

3

\implies{\sf \dfrac{1}{i_2}=\dfrac{1/\sqrt{3}}{\sqrt{3}}}⟹

i

2

1

=

3

1/

3

\implies{\sf \dfrac{1}{i_2}=\dfrac{1}{3}}⟹

i

2

1

=

3

1

\implies{\bf \red{ i_2=3\:A}}⟹i

2

=3A

\huge\underline{\underline{\bf \orange{Answer-}}}

Answer−

Current required to produce a deflection of 60° is {\bf \red{3\:A}}3A .

Similar questions