Physics, asked by Binoyvembayam2399, 9 days ago

In a tension test, a metallic rod of diameter 16mm produces an elongation of 48 mm whensubjected to 90 kN load. The length of the baris 150 mm. Find modulus of elasticity.​

Answers

Answered by soni9426990822
0

Answer:

please go in calnshdjdkdkddf

Answered by GulabLachman
0

Given: In a tension test, a metallic rod of diameter 16mm produces an elongation of 48 mm when subjected to 90 kN load. The length of the bar is 150 mm.

To find: Modulus of elasticity of the bar

Explanation: Let the modulus of elasticity be y.

Tension(F)= 90 kN

= 90000 N( 1 kN = 1000N)

Length of the bar(l)

= 150 mm

= 0.15 m( 1 mm = 0.001 m)

Elongation of bar(dl)

= 48 mm

= 0.048 m(1 mm= 0.001 m)

Diameter of bar = 16 mm

Radius(r)= Diameter/2

= 16/2

= 8 mm

= 0.008 m

Cross-sectional area of the bar

=\pi {r}^{2}

=3.14 \times  ({0.008)}^{2}

=200.96 \times  {10}^{ - 6}

Strain of bar

= Elongation/ Length

= dl / l

= 0.048/0.150

=0.32

Stress in bar

= Tension/ Area

= \frac{90000}{200.96 \times  {10}^{ - 6} }

=448 \times  {10}^{6}

The formula relating y, strain and stress is:

y = Stress / Strain

= \frac{448 \times  {10}^{6} }{0.32}

=1400 \times  {10}^{6}

=14 \times  {10}^{8}  \: Pa

Therefore, the modulus of elasticity is

14 \times  {10}^{8} Pa.

Similar questions