In a traingle ABC, prove that Tan(C-A)/2 = (c-a)(c+a) cotB/2.
Answers
Answered by
0
Step-by-step explanation:
In ∆ABC,by sine Rule
a/sinA=b/sinB=c/sinC=K
a=K sinA, b=K sinB, c=K sinC
Consider,
c-a/c+a=K sinC-K sinA/K sinC+K sinA
=sinC-sinA/sinC+sinA
=2cos[(C+A)/2] sin[(C-A)/2]
/ 2sin[(C+A)/2]cos[(C-A)/2]
=cot[(C+A)/2]tan[(C-A)/2]
=tanB/2 tan(C-A)/2
So, tan(C-A)/2=(c-a) (c+a) cot B/2 (Proved)
Similar questions