Math, asked by pk333, 1 year ago

In a trangle,
prove that c(acosB-bcosA)=a^2-b^2
here a,b,c are sides and A,B are coressponding angles.​

Answers

Answered by rishu6845
10

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Answered by ssanskriti1107
0

Answer:

c(acosB-bcosA)=a^2-b^2 is proved.

Step-by-step explanation:

We know that

 cosB=\frac{a^+c^2-b^2}{2ac}               and       cosA=\frac{b^2+c^2-a^2}{2bc}

Simplifying c(acosB-bcosA)=a^2-b^2

L.H.S \implies  c(a  \hspace{0.1cm}\frac{a^+c^2-b^2}{2ac} - b \hspace{0.1cm} \frac{b^2+c^2-a^2}{2bc})

         \implies   c(  \hspace{0.1cm}\frac{a^+c^2-b^2}{2c} -  \hspace{0.1cm} \frac{b^2+c^2-a^2}{2c})

         \implies    c(  \hspace{0.1cm}\frac{(a^+c^2-b^2)\hspace{0.1cm} -\hspace{0.1cm} (b^2+c^2-a^2)}{2c} )

         \implies     (  \hspace{0.1cm}\frac{a^+c^2-b^2\hspace{0.1cm} -\hspace{0.1cm} b^2-c^2+a^2}{2} )

         \implies     (  \hspace{0.1cm}\frac{2a^{2} \hspace{0.1cm}-\hspace{0.1cm}2b^2}{2} )

         \implies     a^2-b^2

Hence Proved.

#SPJ3

Similar questions