In a trapezium, AB||DC and DA ⊥ AB. If DC = 7 cm, BC = 10 cm, AB = 13 cm and CL ⊥ AB, find the area of trapezium.
Answers
Step-by-step explanation:
Given:
Given: AB||DC,
Given: AB||DC, DA ⊥ ⊥ AB
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8 Here CL = AD = height of the trapezium
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8 Here CL = AD = height of the trapezium Therefore height = 8 cm
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8 Here CL = AD = height of the trapezium Therefore height = 8 cm Now, We know that area of trapezium is 1 2 12× (sum of parallel sides) × height
Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8 Here CL = AD = height of the trapezium Therefore height = 8 cm Now, We know that area of trapezium is 1 2 12× (sum of parallel sides) × height Therefore Area of trapezium = 1 2 12× (7 + 13) × 8 = 80 cm 2