Math, asked by avneet4023, 10 hours ago

In a trapezium, AB||DC and DA ⊥ AB. If DC = 7 cm, BC = 10 cm, AB = 13 cm and CL ⊥ AB, find the area of trapezium.

Answers

Answered by kanakrathor07
0

Step-by-step explanation:

Given:

Given: AB||DC,

Given: AB||DC, DA ⊥ ⊥ AB

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8 Here CL = AD = height of the trapezium

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8 Here CL = AD = height of the trapezium Therefore height = 8 cm

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8 Here CL = AD = height of the trapezium Therefore height = 8 cm Now, We know that area of trapezium is 1 2 12× (sum of parallel sides) × height

Given: AB||DC, DA ⊥ ⊥ AB and CL ⊥ ⊥ AB DC = 7cm BC = 10cm AB = 13cm Therefore here AL = DC That is AL = 7 cm Hence LB = AB – AL = 13 – 7 = 6cm In △ △LCB using Pythagoras theorem BC2 = BL2 + CL2 102 = 62 + CL2 100 = 36 + CL2 CL2 = 100 – 36 CL2 = 64 CL = 8 Here CL = AD = height of the trapezium Therefore height = 8 cm Now, We know that area of trapezium is 1 2 12× (sum of parallel sides) × height Therefore Area of trapezium = 1 2 12× (7 + 13) × 8 = 80 cm 2

Similar questions