Math, asked by nikilnbp1811, 8 months ago

In a trapezium ABCD, AB || CD, AC and BD diagonals are intense
Prove that AO. OD = BO.OC.​

Answers

Answered by Abhishek474241
4

AnSwEr

{\tt{\red{\underline{\large{Given}}}}}

  • In a trap AB//CD
  • AC and BD are diagonals

{\sf{\green{\underline{\large{To\: Prove}}}}}

  • AO.OD=BO.OC

{\sf{\pink{\underline{\Large{Explanation}}}}}

Breaking the given trap in small ∆s

BCO

\setlength{\unitlength}{5mm}\begin{picture}(5,5)\put(0,0){\line(1,0){8}}\put(0,0){\line(2,1){6}}\put(8,0){\line(-2,3){2}}\end{picture}

∆AOD

\setlength{\unitlength}{5mm}\begin{picture}(5,5)\put(0,0){\line(1,0){8}}\put(0,0){\line(2,1){6}}\put(8,0){\line(-2,3){2}}\end{picture}

Proof

  • AO.OD=BO.OC
  • we have to proof this
  • things so we have to moce to this ∆s
  • and similar it

In ∆BCO and ∆AOD

  • DAO = OCB (AB//CD and AC is transversal)
  • ADO = OBC (AB//CD and BD is transversal)

∆BCO ~ ∆AOD

\tt\rightarrow\frac{AO}{OC}\frac{OD}{BO}\frac{AB}{CD}

\tt\rightarrow\frac{AO}{OC}\frac{OD}{BO}

=>AO×OD=OC×BO

Hence proved

Attachments:
Similar questions