in a Trapezium ABCD AB parallel to CD. DC equal twice of AB FE parallel to AB cuts AD in F and BC in E such that BE/EC is equal 3/4.diagonal BD intersect EF at G. prove that 7FE=10AB.
Answers
In trapezium ABCD, AB||DA and DC=2AB. FE drawn parallel to AB cuts AD in F and BC in E such that BE
/EC = 3/4. Diagonal DB intersects EF at G.
Prove that 7FE = 10 AB.
Explanation:
In △DFG and △DAB, we have
∠1=∠2 [ ∵ AB ∣∣ DC∣∣ EF ∴ ∠1 and ∠2 are corresponding angles]
∠ FDG = ∠ ADB [Common]
So, by AA - criterion of similarity,
we have
∴ Δ DFG∼Δ DAB
⇒ DADF=ABFG.......(i)
In trapezium ABCD, we have
EF||AB||DC
∴ DFAF=ECBE
⇒ DFAF=43
[∵ECBE=43(Given)
⇒ DFAF+1=43+1 [Adding 1 on both sides]
⇒ DFAF+DF=47
⇒ DFAD=47
⇒ ADDF=74......(ii)
From (i) and (ii), we get
ABFG=74
⇒ FG=74AB........(iii)
In Δ BEG and Δ BCD, we have
∠BEG=∠BCD [Corresponding angles]
∠B=∠B [Common]
∴ Δ BEG ∼ Δ BCD [By AA-criterion of similarity]
⇒ BCBE = CDEG
⇒ 73 = CDEG
[ ∵ ECBE = 43 ⇒ BEEC = 34 ⇒ BEEC +1 = 34+1 ⇒ BEBC = 37 ]
⇒ EG = 73CD
⇒ EG = 73 × 2AB
⇒ EG = 76 × AB
Adding (iii) and (iv), we get
FG + EG = 74AB + 76AB
⇒ EF = 710AB
⇒ 7EF = 10AB ⇒ Hence proved