In a trapezium ABCD where AB is parallel to CD, E is the mid-point of BC, prove that ΔAED = 1/2 trapezium ABCD.
Answers
Answer:
The proof is explained below
Step-by-step explanation:
Given a trapezium ABCD where AB is parallel to CD, E is the mid-point of BC, we have to prove that ΔAED = trapezium ABCD
Let h be the height of trapezium ABEF
In trapezium ABFE because E is the mid point of side BC
In trapezium FECD,
Adding above two equations, we get
⇒
⇒
⇒
Step-by-step explanation:
The proof is explained below
Step-by-step explanation:
Given a trapezium ABCD where AB is parallel to CD, E is the mid-point of BC, we have to prove that ΔAED = \frac{1}{2}
2
1
trapezium ABCD
Let h be the height of trapezium ABEF
In trapezium ABFE because E is the mid point of side BC
ar(AFE) = ar(ABEF)-ar(AFE)ar(AFE)=ar(ABEF)−ar(AFE)
ar(AFE) = ar(ABEF)-\frac{1}{2}\times AB\times har(AFE)=ar(ABEF)−
2
1
×AB×h
In trapezium FECD,
ar(FED) = ar(FECD)-ar(CDE)ar(FED)=ar(FECD)−ar(CDE)
ar(FED) = ar(FECD)-\frac{1}{2}\times CD\times har(FED)=ar(FECD)−
2
1
×CD×h
Adding above two equations, we get
ar(AFE)+ar(FED)=ar(ABEF)-\frac{1}{2}\times AB\times h+ar(FECD)-\frac{1}{2}\times CD\times har(AFE)+ar(FED)=ar(ABEF)−
2
1
×AB×h+ar(FECD)−
2
1
×CD×h
⇒ ar(AED)=ar(ABCD)-\frac{1}{2}[\frac{1}{2}\times 2h \times (AB+CD)]ar(AED)=ar(ABCD)−
2
1
[
2
1
×2h×(AB+CD)]
⇒ar(AED)=ar(ABCD)-\frac{1}{2}ar(ABCD)ar(AED)=ar(ABCD)−
2
1
ar(ABCD)
⇒ar(AED)=\frac{1}{2}ar(ABCD)ar(AED)=
2
1
ar(ABCD)