Math, asked by ProTronGD, 1 year ago

In a trapezium ABCD where AB is parallel to CD, E is the mid-point of BC, prove that ΔAED = 1/2 trapezium ABCD.

Answers

Answered by SerenaBochenek
46

Answer:

The proof is explained below

Step-by-step explanation:


Given a trapezium ABCD where AB is parallel to CD, E is the mid-point of BC, we have to prove that ΔAED = \frac{1}{2}trapezium ABCD


Let h be the height of trapezium ABEF


In trapezium ABFE because E is the mid point of side BC



ar(AFE) = ar(ABEF)-ar(AFE)

ar(AFE) = ar(ABEF)-\frac{1}{2}\times AB\times h

In trapezium FECD,


ar(FED) = ar(FECD)-ar(CDE)

ar(FED) = ar(FECD)-\frac{1}{2}\times CD\times h

Adding above two equations, we get

ar(AFE)+ar(FED)=ar(ABEF)-\frac{1}{2}\times AB\times h+ar(FECD)-\frac{1}{2}\times CD\times h

ar(AED)=ar(ABCD)-\frac{1}{2}[\frac{1}{2}\times 2h \times (AB+CD)]

ar(AED)=ar(ABCD)-\frac{1}{2}ar(ABCD)

ar(AED)=\frac{1}{2}ar(ABCD)



Attachments:
Answered by thelegend06
2

Step-by-step explanation:

The proof is explained below

Step-by-step explanation:

Given a trapezium ABCD where AB is parallel to CD, E is the mid-point of BC, we have to prove that ΔAED = \frac{1}{2}

2

1

trapezium ABCD

Let h be the height of trapezium ABEF

In trapezium ABFE because E is the mid point of side BC

ar(AFE) = ar(ABEF)-ar(AFE)ar(AFE)=ar(ABEF)−ar(AFE)

ar(AFE) = ar(ABEF)-\frac{1}{2}\times AB\times har(AFE)=ar(ABEF)−

2

1

×AB×h

In trapezium FECD,

ar(FED) = ar(FECD)-ar(CDE)ar(FED)=ar(FECD)−ar(CDE)

ar(FED) = ar(FECD)-\frac{1}{2}\times CD\times har(FED)=ar(FECD)−

2

1

×CD×h

Adding above two equations, we get

ar(AFE)+ar(FED)=ar(ABEF)-\frac{1}{2}\times AB\times h+ar(FECD)-\frac{1}{2}\times CD\times har(AFE)+ar(FED)=ar(ABEF)−

2

1

×AB×h+ar(FECD)−

2

1

×CD×h

⇒ ar(AED)=ar(ABCD)-\frac{1}{2}[\frac{1}{2}\times 2h \times (AB+CD)]ar(AED)=ar(ABCD)−

2

1

[

2

1

×2h×(AB+CD)]

⇒ar(AED)=ar(ABCD)-\frac{1}{2}ar(ABCD)ar(AED)=ar(ABCD)−

2

1

ar(ABCD)

⇒ar(AED)=\frac{1}{2}ar(ABCD)ar(AED)=

2

1

ar(ABCD)

Similar questions