Math, asked by ItzFadedGuy, 1 month ago

In a trapezium ABCD, AB is parallel to DC and DC = 2AB. EF is parallel to AB, where E and F lie on BC and AD respectively such that \dfrac{BE}{EC} = \dfrac{4}{3}. Diagonal DB intersects EF at G. Prove that:

5AB^2 = 5AC^2 + BC^2

Please don't spam and thanks for helping me! Answer with proper explanation.

Answers

Answered by Anonymous
13

In a trapezium ABCD, AB||DC and DC = 2AB

Also, \sf\frac{BE}{EC}=[tex}\sf\frac{4}{3}[/tex]

In trapezium ABCD, EF||AB||CD

\therefore\sf\frac{ AF }{FD} = \frac{BE}{EC} = \frac{4}{3}

In \bf ΔBGE \: and \: ΔBDC,

\sf \: \: \: \: \: \: \: \: \: \: \: \: ∠B = ∠B \: (common)

\therefore\sf ΔBGE \:≈ \: ΔBDC \: [AA \: similarly ]

\sf \frac{EG}{CD}  =  \frac{BE}{BC} \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: ----eqtn(i)  \\

\sf \frac{be}{ec}  =  \frac{4}{3}  \\

\sf \frac{EC}{be}  =  \frac{3}{4}  \\

\sf \frac{EC}{EC}  + 1 =  \frac{3}{4} + 1  \\

\sf \frac{EC + BE}{BE}  =  \frac{7}{4} \\

\sf \frac{BE}{BC}  =  \frac{4}{7}  \\

from eqtn (I),

\sf \frac{EG}{CD}  =  \frac{4}{7}  \\

\sf EG=  \frac{4}{7} CD \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \: \: ----eqtn(ii) \\

similarly, ΔDGF ~ ΔDBA

\sf \frac{DE}{DA}  =  \frac{FG}{AB}  \\

\sf \frac{FG}{AB}  =  \frac{3}{7}  \\

\sf FG =  \frac{3}{7} AB \:  \:  \:  \: \:  \:  \:  \:  \:  \:  \:  \:   \: \: \: \:   -  -  - - eqtn(iii) \\

\boxed{\sf \frac{AF}{AD} = \frac{4}{7} = \frac{BE}{BC} \frac{EC}{BC} = \frac{3}{7} = \frac{DE}{DA} }

Adding eqtn (II) and (III)

\sf EG+FG = \frac{4}{7}CD+ \frac{3}{7}AB

\sf EF=\frac{4}{7}×(2AB) + \frac{3}{(AB)}

\sf = \frac{8}{7}AB+ \frac{3}{7}AB

\sf = \frac{11}{7}AB

7EF= 11AB Hence, proved

━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Hope you will understand.

Attachments:
Similar questions