Math, asked by sandy415, 1 year ago

in a triangle, A=32,C=65 find the value of x, y.

Answers

Answered by umasubafs
1

YOU CAN DO LIKE THIS a = 33 ; ; b = 56 ; ; c = 65 ; ;  

1. The triangle circumference is the sum of the lengths of its three sides

p = a+b+c = 33+56+65 = 154 ; ;  

2. Semiperimeter of the triangle

s = fraction{ o }{ 2 } = fraction{ 154 }{ 2 } = 77 ; ;  

3. The triangle area using Heron's formula

T = sqrt{ s(s-a)(s-b)(s-c) } ; ; T = sqrt{ 77 * (77-33)(77-56)(77-65) } ; ; T = sqrt{ 853776 } = 924 ; ;  

4. Calculate the heights of the triangle from its area.

T = fraction{ a h _a }{ 2 } ; ; h _a = fraction{ 2 T }{ a } = fraction{ 2 * 924 }{ 33 } = 56 ; ; h _b = fraction{ 2 T }{ b } = fraction{ 2 * 924 }{ 56 } = 33 ; ; h _c = fraction{ 2 T }{ c } = fraction{ 2 * 924 }{ 65 } = 28.43 ; ;  

5. Calculation of the inner angles of the triangle using a Law of Cosines

a**2 = b**2+c**2 - 2bc cos( alpha ) ; ; alpha = arccos( fraction{ a**2-b**2-c**2 }{ 2bc } ) = arccos( fraction{ 33**2-56**2-65**2 }{ 2 * 56 * 65 } ) = 30° 30'37" ; ; beta = arccos( fraction{ b**2-a**2-c**2 }{ 2ac } ) = arccos( fraction{ 56**2-33**2-65**2 }{ 2 * 33 * 65 } ) = 59° 29'23" ; ; gamma = arccos( fraction{ c**2-a**2-b**2 }{ 2ba } ) = arccos( fraction{ 65**2-33**2-56**2 }{ 2 * 56 * 33 } ) = 90° ; ;  

6. Inradius

T = rs ; ; r = fraction{ T }{ s } = fraction{ 924 }{ 77 } = 12 ; ;  

7. Circumradius

R = fraction{ a }{ 2 * sin( alpha ) } = fraction{ 33 }{ 2 * sin 30° 30'37" } = 32.5 ; ;

Similar questions