in a triangle A,B,C if sin2A+2B=sin2C. prove that A=90 orB=90
Answers
Answered by
2
Solution
We have:sin2A=sin2B+sin2C
⇒(sin2B+sin2C)−sin2A=0
⇒2sin(2B+2C2)cos(2B−2C2)−2sinA.cosA=0
⇒2sin(B+C)/2 cos(B−C)−2sinA
.cosA=0Dividing both sides by 2,
we get,⇒sin(B+C)cos(B−C)/2
−2sinA.cos =0Now
A,B,C are angles of the triangle
, henceA+B+C=180°
⇒sin(B+C)cos(B−C)−sin{180°−(B+C)}
.cos{180°−(B+C)}=0
⇒sin(B+C)cos(B−C)−sin(B+C).{−cos(B+C)}=0
⇒sin(B+C)cos(B−C)+sin(B+C).cos(B+C)=0
Dividing both sides by sin(B+C),
.we get
,cos(B−C)+cos(B+C)=0
⇒cos(B+C)+cos(B−C)=0
⇒2cos(B+C+B−C2)cos(B+C−B+C2)=0
⇒cos(B).cos(C)=0Hence
.Either cos(B)=0 or cos(C)=0As cos(90°)=0
⇒B=90° or C=90° [Hence proved]
We have:sin2A=sin2B+sin2C
⇒(sin2B+sin2C)−sin2A=0
⇒2sin(2B+2C2)cos(2B−2C2)−2sinA.cosA=0
⇒2sin(B+C)/2 cos(B−C)−2sinA
.cosA=0Dividing both sides by 2,
we get,⇒sin(B+C)cos(B−C)/2
−2sinA.cos =0Now
A,B,C are angles of the triangle
, henceA+B+C=180°
⇒sin(B+C)cos(B−C)−sin{180°−(B+C)}
.cos{180°−(B+C)}=0
⇒sin(B+C)cos(B−C)−sin(B+C).{−cos(B+C)}=0
⇒sin(B+C)cos(B−C)+sin(B+C).cos(B+C)=0
Dividing both sides by sin(B+C),
.we get
,cos(B−C)+cos(B+C)=0
⇒cos(B+C)+cos(B−C)=0
⇒2cos(B+C+B−C2)cos(B+C−B+C2)=0
⇒cos(B).cos(C)=0Hence
.Either cos(B)=0 or cos(C)=0As cos(90°)=0
⇒B=90° or C=90° [Hence proved]
Similar questions