In a triangle ABC (4,2) is the midpoint of AB.The midpoint of BC is (5,4). midpoint of AC (3,3).Find vertices of triangle.
Answers
✏ Step by step explanation
✬Let us assume a triangle ABC such that D, E and F are the midpoints of AB, BC and CA respectively.
─━─━─━─━─━─━─━─━─━─━─━─━─
✬Since, it is given that (4,2) is the midpoint of AB.
✬This implies, coordinates of D are (4, 2).
─━─━─━─━─━─━─━─━─━─━─━─━─
✬The midpoint of BC is (5,4).
✬This implies coordinates of E are (5, 4)
─━─━─━─━─━─━─━─━─━─━─━─━─
✬Also, The midpoint of AC is (3,3)
✬This implies, coordinates of F are (3, 3).
─━─━─━─━─━─━─━─━─━─━─━─━─
✬ Let assume that coordinates of vertices are A(a, b), B(c, d) and C(e, f).
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─
✬ Since, D(4, 2) is the midpoint of line segment joinjng A(a, b) and B(c, d).
So, by using midpoint Formula, we get
✬ On comparing, we get
─━─━─━─━─━─━─━─━─━─━─━─━─
✬ Since, E(5, 4) is the midpoint of line segment joinjng C(e, f) and B(c, d).
So, by using midpoint Formula, we get
✬ On comparing, we get
─━─━─━─━─━─━─━─━─━─━─━─━─
✬ Since, E(3, 3) is the midpoint of line segment joinjng A(a, b) and C(e, f).
So, by using midpoint Formula, we get
✬ On comparing, we get
─━─━─━─━─━─━─━─━─━─━─━─━─
✬ Adding equations (1), (3) and (5), we get
✬On Subtracting equation (1) from (7), we get
✬On Subtracting equation (2) from (7), we get
✬On Subtracting equation (3) from (7), we get
─━─━─━─━─━─━─━─━─━─━─━─━─
✬ Adding equations (2), (4) and (6), we get
✬On Subtracting equation (2) from (11), we get
✬On Subtracting equation (4) from (11), we get
✬On Subtracting equation (6) from (11), we get
─━─━─━─━─━─━─━─━─━─━─━─━─
─━─━─━─━─━─━─━─━─━─━─━─━─