Math, asked by TOMSJ22, 4 months ago

In a triangle ABC (4,2) is the midpoint of AB.The midpoint of BC is (5,4). midpoint of AC (3,3).Find vertices of triangle.​

Answers

Answered by mathdude500
2

Step by step explanation

✬Let us assume a triangle ABC such that D, E and F are the midpoints of AB, BC and CA respectively.

─━─━─━─━─━─━─━─━─━─━─━─━─

✬Since, it is given that (4,2) is the midpoint of AB.

✬This implies, coordinates of D are (4, 2).

─━─━─━─━─━─━─━─━─━─━─━─━─

✬The midpoint of BC is (5,4).

✬This implies coordinates of E are (5, 4)

─━─━─━─━─━─━─━─━─━─━─━─━─

✬Also, The midpoint of AC is (3,3)

✬This implies, coordinates of F are (3, 3).

─━─━─━─━─━─━─━─━─━─━─━─━─

✬ Let assume that coordinates of vertices are A(a, b), B(c, d) and C(e, f).

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf  To \:  Find :-  \begin{cases} &\sf{Vertices \:  of  \: A,  \: B,  \: and  \: C.}  \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{Solution :-  }}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 1 }}

 ✬ Since, D(4, 2) is the midpoint of line segment joinjng A(a, b) and B(c, d).

So, by using midpoint Formula, we get

\sf \: \sf \:  ⟼ (\dfrac{a + c}{2}  , \dfrac{b + d}{2} ) = (4 , 2)

 ✬ On comparing, we get

\bf\implies \:\dfrac{a + c}{2}  = 4 \: and \: \dfrac{b + d}{2}  = 2

\bf\implies \:a + c = 8 -  - (1) \: and \: b + d = 4 -  - (2)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 2 }}

✬ Since, E(5, 4) is the midpoint of line segment joinjng C(e, f) and B(c, d).

So, by using midpoint Formula, we get

\sf \:  ⟼\sf \:  (\dfrac{c + e}{2}  , \dfrac{d + f}{2} ) = (5 ,4 )

 ✬ On comparing, we get

\bf\implies \:\dfrac{c + e}{2}  = 5 \: and \: \dfrac{d + f}{2}  = 4

\bf\implies \:c + e = 10 \:  -  - (3)and \: d + f = 8 -  - (4)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 3 }}

✬ Since, E(3, 3) is the midpoint of line segment joinjng A(a, b) and C(e, f).

So, by using midpoint Formula, we get

\sf \:  ⟼\sf \:  (\dfrac{a + e}{2}  , \dfrac{b + f}{2} ) = (3 , 3)

 ✬ On comparing, we get

\bf\implies \:\dfrac{a + e}{2}  = 3 \: and \: \dfrac{b + f}{2}  = 3

\bf\implies \:a + e = 6 -  - (5) \: and \: b + f = 6 -  - (6)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 4 }}

 ✬ Adding equations (1), (3) and (5), we get

\bf \:  ⟼ 2( a+  c+ e) = 24

\bf\implies \: \: a +c  + e = 12 -  -  - (7)

 ✬On Subtracting equation (1) from (7), we get

\bf \:  ⟼ e \:  =  \:  4 -  -  - (8)

✬On Subtracting equation (2) from (7), we get

\bf \:  ⟼ a \:  =  \: 2 -  -  - (9)

✬On Subtracting equation (3) from (7), we get

\bf \:  ⟼ c \:  =  \: 6 -  -  - (10)

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline{\bold{❥︎Step :- 5 }}

✬ Adding equations (2), (4) and (6), we get

\bf\implies \:2(b +d  + f) = 18

\bf \:  ⟼   \: b+ d + f \:  = 9 -  -  - (11)

✬On Subtracting equation (2) from (11), we get

\bf \:  ⟼ f \:  = 5 -  -  - (12)

✬On Subtracting equation (4) from (11), we get

\bf \:  ⟼ b \:  = 1 -  -  - (13)

✬On Subtracting equation (6) from (11), we get

\bf \:  ⟼ d \:  = 3 -  -  - (14)

─━─━─━─━─━─━─━─━─━─━─━─━─

\begin{gathered}\begin{gathered}\bf So,  \: vertices  \: are -  \begin{cases} &\sf{A(2,1)} \\ &\sf{B(6,3)}\\ &\sf{C(4,5)} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions