Math, asked by saitharun8377, 9 months ago

In a triangle ABC, A – B = 60º and 64D2 = 3abc (a + b + c) {where a,b,c are sides of DABC opposite to vertices A,B,C respectively and D is area of the triangle}, then cosC is equal to-

Answers

Answered by mithumahi
0

Given:

        A - B = 60^0

        64 \triangle^2 = 3abc(a+b+c)

 Here \triangle is area of triangle, a is side opposite to angle A and so on

    64 \frac{a^2 b^2 c^2}{16R^2} = 3abc(a+b+C)

     16sin A sinB sinC = 3(sinA+sinB+sinC)

simplifying with sinA+sinB+sinC = 4cos\frac{A}{2} cos\frac{B}{2}cos\frac{c}{2}

                                  32sin\frac{A}{2}sin\frac{B}{2}sin\frac{C}{2} = 3

                        16(cos\frac{A-B}{2} -sin\frac{C}{2}) sin \frac{C}{2} = 3

with A - B = 60,

          sin\frac{C}{2} = \frac{\sqrt{3}}{4} and

        cos C = 1 -2sin^2\frac{C}{2} = \frac{5}{8}

Answered by dukulai890
0

Given:

In triangle ABC, A-B=60\textdegree

and 64 \Delta^{2}=3abc(a+b+c)

where here,

\Delta is area of the triangle

a,b,c are the sides opposite to angles A,B,C

We know:

\Delta=\frac{abc}{4R} and a=2R\times SinA, b=2R\times SinB, c=2R\times SinC.

and SinA+SinB+SinC=4Cos\frac{A}{2}\times Cos\frac{B}{2} \times Cos\frac{C}{2}

Replacing the above in given, we get:

64 \Delta^{2}=3abc(a+b+c)

64 (\frac{abc}{4R} )^{2}=3abc(a+b+c)

4\frac{abc}{R^{2} }=3(a+b+c)

4\times 2R\times SinA\times 2R\times SinB\times 2R\times SinC\times \frac{1}{R^{2} } =3(2R\times SinA+2R\times SinB+2R\times SinC)

16SinA\times SinB \times SinC=3(SinA+SinB+SinC)

We also know that SinA= 2Sin\frac{A}{2} \times Cos\frac{A}{2} ,SinB= 2Sin\frac{B}{2} \times Cos\frac{B}{2} , SinC= 2Sin\frac{C}{2} \times Cos\frac{C}{2}

Therefore by placing in above equation:

16SinA\times SinB \times SinC=3(SinA+SinB+SinC)

32Sin\frac{A}{2}\times  Sin\frac{B}{2}\times Sin\frac{C}{2}=3

16(Cos\frac{A-B}{2} -Sin\frac{C}{2}) Sin\frac{C}{2}=3

Replaceing A-B=60\textdegree, we get:

Sin\frac{C}{2} =\frac{\sqrt{3} }{4}

Therefore:

CosC=1-2Sin^{2}\frac{C}{2}

CosC=1-2(\frac{\sqrt{3} }{4} )^{2}

CosC=1-2\times \frac{3}{16}

CosC=1-\frac{3}{8}

CosC=\frac{5}{8}

The valueof CosC=\frac{5}{8}.

Similar questions