Math, asked by saurav46311, 1 month ago

In a triangle Abc , a line is drawn parallel to bc to meet ab at d and ac at e. DC and BE meet at X. Prove AD/AB = EX/XB

Answers

Answered by MysticSohamS
7

Answer:

hey here is your proof

pls mark it as brainliest

refer the reference diagram uploaded above

now \: considering \: △DXE \:  \: and \:  \: △BXC \\ ∠DXE = ∠BXC \:  \:  \:  \:  \:  \:  \: (vertically \: opposite \: angles) \\ since \: DE \:  ||  \: BC \\ ∠DEX=∠XBC \:  \:  \:  \:  \:  \:  \: (alternate \: angles \: theorem) \\  \\ △DXE \:  \: is \: similar \: to \: △BXC \:  \:  \:  \:  \:  \:  \: (AA \: test \: of \: similarity) \\  \\ hence \: then \\  \frac{EX}{XB}  =  \frac{DE}{BC}  \:  \:  \:  \:  \:  \:  \: (c.s.s.t) \:  \:  \:  \:  \: (2)

so \: from \: (1) \: and \: (2) \\ we \: get \\  \\  \frac{AD}{AB}  =  \frac{EX}{XB}  \\ thus \: proved

To  \: prove =  \\  \frac{AD}{AB}  =  \frac{EX}{XB}  \\  \\ so \: here \: BC \:  ||  \: DE \\ so \: considering \: △ADE \: \:  and \:  \: △ABC \\ ∠DAE= ∠BAC \:  \:  \:  \:  \:  \:  \:  \: (common \: angle) \\ since \: BC \:  ||  \: DE \\ ∠ ADE=∠ABC \:  \:  \:  \:  \:  (corresponding \: angles) \\  \\ △ADE \: \:  is \: similar \: to \: △ABC \:  \:  \:  \:  \:  \:  \: (AA \: test \: of \: similarity) \\ hence \: then \\  \frac{AD}{AB}  =  \frac{DE}{BC}  \:  \:  \:  \:  \:  \:  \: (c.s.s.t) \:  \:  \:  \:  \:  \:  \: (1)

Attachments:
Similar questions